67 research outputs found

    Analyst forecast accuracy and firm growth

    Get PDF
    This study examines the affect of business segment industry specialization as a supplement to portfolio complexity on forecast error and Tobin’s Q. After controlling for diversification and growth potential, forecast error is negatively related to business segment industry specialization. Diversification (high growth firms) increases (decreases) forecast error. High growth, focused firms are associated with noncomplex portfolios and business segment industry specialization. Within a simultaneous equation model, forecast error does not predict the firm’s Tobin Q ratio; however, Tobin’s Q does predict whether analysts forecast accurately

    pB264, a small, mobilizable, temperature sensitive plasmid from Rhodococcus

    Get PDF
    BACKGROUND: Gram-positive bacteria of the genus Rhodococcus have shown an extraordinary capacity for metabolizing recalcitrant organic compounds. One hindrance to the full exploitation of Rhodococcus is the dearth of genetic tools available for strain manipulation. To address this issue, we sought to develop a plasmid-based system for genetic manipulation of a variety of Rhodococcus strains. RESULTS: We isolated and sequenced pB264, a 4,970 bp cryptic plasmid from Rhodococcus sp. B264-1 with features of a theta-type replication mechanism. pB264 was nearly identical to pKA22, a previously sequenced but uncharacterized cryptic plasmid. Derivatives of pB264 replicate in a diverse range of Rhodococcus species, showing that this plasmid does not bear the same host range restrictions that have been exhibited by other theta replicating plasmids. Replication or maintenance of pB264 is inhibited at 37°C, making pB264 useful as a suicide vector for genetic manipulation of Rhodococcus. A series of deletions revealed that ca. 1.3 kb from pB264 was sufficient to support replication and stable inheritance of the plasmid. This region includes two open reading frames that encode functions (RepAB) that can support replication of pB264 derivatives in trans. Rhodococcus sp. B264-1 will mobilize pB264 into other Rhodococcus species via conjugation, making it possible to genetically modify bacterial strains that are otherwise difficult to transform. The cis-acting element (oriT) required for conjugal transfer of pB264 resides within a ca. 0.7 kb region that is distinct from the regions responsible for replication. CONCLUSION: Shuttle vectors derived from pB264 will be useful for genetic studies and strain improvement in Rhodococcus, and will also be useful for studying the processes of theta replication and conjugal transfer among actinomycetes

    Manipulating gene expression for the metabolic engineering of plants

    Get PDF
    Introducing and expressing foreign genes in plants present many technical challenges that are not encountered with microbial systems. This review addresses the variety of issues that must be considered and the variety of options that are available, in terms of choosing transformation systems and designing recombinant transgenes to ensure appropriate expression in plant cells. Tissue specificity and proper developmental regulation, as well as proper subcellular localization of products, must be dealt with for successful metabolic engineering in plants

    Hepatic steatosis progresses faster in HIV mono-infected than HIV/HCV co-infected patients and is associated with liver fibrosis

    Get PDF
    Background & Aims Hepatic steatosis (HS) seems common in patients infected with human immunodeficiency virus (HIV). However, the relative effect of HIV, as well as hepatitis C virus (HCV) in those co-infected, and the influence of HS on liver fibrosis progression are unclear. Methods The LIVEr disease in HIV (LIVEHIV) is a Canadian prospective Cohort using transient elastography and associated controlled attenuation parameter (CAP) to screen for HS and liver fibrosis in unselected HIV-infected adults. HS progression was defined as development of any grade HS (CAP ≥248 dB/m), or transition to severe HS (CAP ≥292 dB/m) for those with any grade HS at baseline. Fibrosis progression was defined as development of significant liver fibrosis (liver stiffness measurement [LSM] ≥7.1kPa), or transition to cirrhosis (LSM ≥12.5kPa) for those with significant liver fibrosis at baseline. Cox regression analysis was used to assess predictors of HS and fibrosis progression. Results A prospective cohort study was conducted, which included 726 HIV-infected patients (22.7% HCV co-infected). Prevalence of any grade HS did not differ between HIV mono-infected and HIV/HCV co-infected patients (36.1% vs 38.6%, respectively). 313 patients were followed for a median of 15.4 (interquartile range 8.5-23.0) months. The rate of HS progression was 37.8 (95% confidence interval [CI] 29.2-49.0) and 21.9 (95% CI 15.6-30.7) per 100 person-years in HIV mono-infection and HIV/HCV co-infection, respectively. HCV co-infection was an independent negative predictor of HS progression (adjusted hazard ratio [aHR] 0.50, 95% CI 0.28-0.89). HS predicted liver fibrosis progression in HIV mono-infection (aHR 4.18, 95% CI 1.21-14.5), but not in HIV/HCV co-infection. Conclusion HS progresses faster and is associated with liver fibrosis progression in HIV mono-infection but not in HIV/HCV co-infection

    Variation in the organization and subunit composition of the mammalian pyruvate dehydrogenase complex E2/E3BP core assembly

    Get PDF
    The final version of this article is available at the link below.Crucial to glucose homoeostasis in humans, the hPDC (human pyruvate dehydrogenase complex) is a massive molecular machine comprising multiple copies of three distinct enzymes (E1–E3) and an accessory subunit, E3BP (E3-binding protein). Its icosahedral E2/E3BP 60-meric ‘core’ provides the central structural and mechanistic framework ensuring favourable E1 and E3 positioning and enzyme co-operativity. Current core models indicate either a 48E2+12E3BP or a 40E2+20E3BP subunit composition. In the present study, we demonstrate clear differences in subunit content and organization between the recombinant hPDC core (rhPDC; 40E2+20E3BP), generated under defined conditions where E3BP is produced in excess, and its native bovine (48E2+12E3BP) counterpart. The results of the present study provide a rational basis for resolving apparent differences between previous models, both obtained using rhE2/E3BP core assemblies where no account was taken of relative E2 and E3BP expression levels. Mathematical modelling predicts that an ‘average’ 48E2+12E3BP core arrangement allows maximum flexibility in assembly, while providing the appropriate balance of bound E1 and E3 enzymes for optimal catalytic efficiency and regulatory fine-tuning. We also show that the rhE2/E3BP and bovine E2/E3BP cores bind E3s with a 2:1 stoichiometry, and propose that mammalian PDC comprises a heterogeneous population of assemblies incorporating a network of E3 (and possibly E1) cross-bridges above the core surface.This work was partly supported by EPSRC (under grants GR/R99393/01 and EP/C015452/1)

    Determining the Phosphorus Release of GraINzyme Phytase in Nursery Pigs

    Get PDF
    A total of 360 pigs (200 × 400, DNA; initially 21.9 ± 0.42 lb) were used in a 21-d growth trial to determine the available P (aP) release curve for GraINzyme Phytase (Agrivida Inc., Woburn, MA). Pigs were weaned at approximately 21 d of age, randomly allotted to pens based on initial BW and fed common starter diets. From d 18 to 21 post-weaning, all pigs were fed a diet containing 0.11% aP. On d 21 post-weaning, considered d 0 of the study, pens were blocked by BW and randomly allotted to 1 of 8 dietary treatments with 5 pigs per pen and 9 pens per treatment. Dietary treatments were formulated to include increasing aP derived from either an inorganic P source (0.11, 0.19, or 0.27% from monocalcium P) or increasing levels of phytase (150, 250, 500, 1,000, or 1,500 FTU/kg). Diets were corn-soybean meal-based and contained 1.24% standardized ileal digestible (SID) Lys. On d 21 of the trial, 1 pig per pen (weighing closest to the mean pen BW) was humanely euthanized and the right fibula was collected to determine bone ash using the non-defatted processing method. Overall (d 0 to 21), pigs fed increasing aP from inorganic P or phytase had improved (linear, P \u3c 0.002) ADG, ADFI, and F/G. Bone ash weight and percentage bone ash increased (linear, P \u3c 0.001) with increasing inorganic P or added phytase. Based on these results, the release equations developed for GraINzyme for ADG, G:F, bone ash weight, and percentage bone ash are: aP = (0.255 × FTU) ÷ (1299.969 + FTU); aP = (0.233 × FTU) ÷ (1236.428 + FTU); aP = (45999.949 × FTU) ÷ (462529200 + FTU); and aP = (0.272 × FTU) ÷ (2576.581 + FTU), respectively

    The Complete Genome of Teredinibacter turnerae T7901: An Intracellular Endosymbiont of Marine Wood-Boring Bivalves (Shipworms)

    Get PDF
    Here we report the complete genome sequence of Teredinibacter turnerae T7901. T. turnerae is a marine gamma proteobacterium that occurs as an intracellular endosymbiont in the gills of wood-boring marine bivalves of the family Teredinidae (shipworms). This species is the sole cultivated member of an endosymbiotic consortium thought to provide the host with enzymes, including cellulases and nitrogenase, critical for digestion of wood and supplementation of the host's nitrogen-deficient diet. T. turnerae is closely related to the free-living marine polysaccharide degrading bacterium Saccharophagus degradans str. 2–40 and to as yet uncultivated endosymbionts with which it coexists in shipworm cells. Like S. degradans, the T. turnerae genome encodes a large number of enzymes predicted to be involved in complex polysaccharide degradation (>100). However, unlike S. degradans, which degrades a broad spectrum (>10 classes) of complex plant, fungal and algal polysaccharides, T. turnerae primarily encodes enzymes associated with deconstruction of terrestrial woody plant material. Also unlike S. degradans and many other eubacteria, T. turnerae dedicates a large proportion of its genome to genes predicted to function in secondary metabolism. Despite its intracellular niche, the T. turnerae genome lacks many features associated with obligate intracellular existence (e.g. reduced genome size, reduced %G+C, loss of genes of core metabolism) and displays evidence of adaptations common to free-living bacteria (e.g. defense against bacteriophage infection). These results suggest that T. turnerae is likely a facultative intracellular ensosymbiont whose niche presently includes, or recently included, free-living existence. As such, the T. turnerae genome provides insights into the range of genomic adaptations associated with intracellular endosymbiosis as well as enzymatic mechanisms relevant to the recycling of plant materials in marine environments and the production of cellulose-derived biofuels

    The Complete Genome of \u3cem\u3eTeredinibacter turnerae\u3c/em\u3e T7901: An Intracellular Endosymbiont of Marine Wood-Boring Bivalves (Shipworms)

    Get PDF
    Here we report the complete genome sequence of Teredinibacter turnerae T7901. T. turnerae is a marine gamma proteobacterium that occurs as an intracellular endosymbiont in the gills of wood-boring marine bivalves of the family Teredinidae (shipworms). This species is the sole cultivated member of an endosymbiotic consortium thought to provide the host with enzymes, including cellulases and nitrogenase, critical for digestion of wood and supplementation of the host\u27s nitrogen-deficient diet. T. turnerae is closely related to the free-living marine polysaccharide degrading bacterium Saccharophagus degradans str. 2–40 and to as yet uncultivated endosymbionts with which it coexists in shipworm cells. Like S. degradans, the T. turnerae genome encodes a large number of enzymes predicted to be involved in complex polysaccharide degradation (\u3e100). However, unlike S. degradans, which degrades a broad spectrum (\u3e10 classes) of complex plant, fungal and algal polysaccharides, T. turnerae primarily encodes enzymes associated with deconstruction of terrestrial woody plant material. Also unlike S. degradans and many other eubacteria, T. turnerae dedicates a large proportion of its genome to genes predicted to function in secondary metabolism. Despite its intracellular niche, the T. turnerae genome lacks many features associated with obligate intracellular existence (e.g. reduced genome size, reduced %G+C, loss of genes of core metabolism) and displays evidence of adaptations common to free-living bacteria (e.g. defense against bacteriophage infection). These results suggest that T. turnerae is likely a facultative intracellular ensosymbiont whose niche presently includes, or recently included, free-living existence. As such, the T. turnerae genome provides insights into the range of genomic adaptations associated with intracellular endosymbiosis as well as enzymatic mechanisms relevant to the recycling of plant materials in marine environments and the production of cellulose-derived biofuels

    A Predictive Model of Intein Insertion Site for Use in the Engineering of Molecular Switches

    Get PDF
    Inteins are intervening protein domains with self-splicing ability that can be used as molecular switches to control activity of their host protein. Successfully engineering an intein into a host protein requires identifying an insertion site that permits intein insertion and splicing while allowing for proper folding of the mature protein post-splicing. By analyzing sequence and structure based properties of native intein insertion sites we have identified four features that showed significant correlation with the location of the intein insertion sites, and therefore may be useful in predicting insertion sites in other proteins that provide native-like intein function. Three of these properties, the distance to the active site and dimer interface site, the SVM score of the splice site cassette, and the sequence conservation of the site showed statistically significant correlation and strong predictive power, with area under the curve (AUC) values of 0.79, 0.76, and 0.73 respectively, while the distance to secondary structure/loop junction showed significance but with less predictive power (AUC of 0.54). In a case study of 20 insertion sites in the XynB xylanase, two features of native insertion sites showed correlation with the splice sites and demonstrated predictive value in selecting non-native splice sites. Structural modeling of intein insertions at two sites highlighted the role that the insertion site location could play on the ability of the intein to modulate activity of the host protein. These findings can be used to enrich the selection of insertion sites capable of supporting intein splicing and hosting an intein switch
    corecore