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Metabolic Engineering of Medicinal Plants and 
Microorganisms for the Production of Natural Products  
  Oktavia     Hendrawati  ,     Herman J.     Woerdenbag  ,     Jacques     Hille  , and     Oliver     Kayser       

    19.1 
Introduction 

 Plants are a rich source of  bioactive compound s. Compounds of  plant  origin are 
used as drugs and precursors of semisynthetic drugs, and may provide valuable 
leads for novel drug design. Furthermore, plant extracts have been and are still 
used to prevent, and to treat, a number of diseases although the mechanism of 
action is frequently unknown. Finally, there is a global demand for  “ greener ”  
manufacturing processes, which are economically attractive, to be available in a 
timely manner  [1] . 

 Worldwide more than 50   000 plant species are used for medicinal purposes  [2] . 
The  World Health Organization  ( WHO ) estimated that more than 80% of the 
population in the world in less developed countries depend primarily on herbal 
medicine for basic healthcare needs  [3] . The current herbal drug market has 
reached a level of US$62 billion, which is forecast to grow to US$5 trillion in 2050 
 [4] . The world market for  herbal medicine s shows an annual growth of 5 – 15%  [5] . 
In the United Kingdom, more than 25% of the population use herbal medicines 
on a regular basis  [3] . 

 In the past 30 years, more than 25% of the new drug entities approved were 
based on a molecule of plant origin and about one third of the approximately 980 
new pharmaceuticals originated from, or were inspired by, natural products  [6, 7] . 
About 50% of the top - selling chemicals are derived from knowledge of plant sec-
ondary metabolism  [7] . About 40% of the pharmaceuticals in the United States 
and Europe use plants as raw source material  [8] . 

 Besides plants and plant extracts,  pure compounds derived from plants  play an 
important role in contemporary pharmacy and medicine. Typical plant compound 
(Table  19.1  and Figure  19.1 ) commonly used drugs are terpenoids, alkaloids, 
polyketides, phenylpropanoids, and fl avonoids. For examples, morphine and 
codeine from  Papaver somniferum  L., artemisinin from  Artemisia annua  L., paclit-
axel from  Taxus brevifolia  Nutt, genistein from  Glycine max  L. (Merr.), scopolamine 
from  Dubosia species , campothecin from  Camptotheca acuminata  Decne, and podo-
phyllotoxin from  Podophyllum  species.     
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 Despite the use of and demand for plant - derived compounds, their availability 
is a major bottleneck in supplying the pharmaceutical needs. Most of these com-
pounds are secondary metabolites, which are present only in low amounts from 
natural sources. Most  medicinal plant s are not cultivated, but are collected 
from the wild and some of them are slow growing. Because of intensive collection 
from the wild, the current extinction rate of medicinally used plants is estimated 

     Figure 19.1     Chemical structures of the important plant -  derived compounds discussed in this 
chapter.  
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to be 100 – 1000 times higher than for other plants. As many as 15   000 out of 
50   000 – 70   000 medicinal plant species are now threatened with extinction  [19] . 
Currently between 4000 and 10   000 medicinal plants are on the endangered species 
list and this number is expected to increase in the future  [20] . 

 There are a number of limitations to obtaining plant - derived compounds. They 
may be restricted to one species or genus, and might be formed only during a 
particular stage of growth or development or under specifi c seasonal, stress or 
nutrient availability conditions  [21, 22] . Chemists have also been challenged to 
synthesize plant - derived compounds via organic chemistry. This is often ham-
pered by the chemical complexity, specifi c stereochemistry, and the economic 
feasibility. 

  Metabolic engineering  may offer prospects to overcome the lack of availability 
of such compounds, through the advancement of molecular biology techniques, 
including cloning, recombinant DNA, and knowledge of the plant biosynthetic 
pathways. In this chapter we discuss the major strategies in plant metabolic engi-
neering and their principle approaches and its prospects and limitations for the 
production of drugs and fi ne chemicals. Case studies are used as illustrations.  

   19.2 
The Plant as a Source of Natural Products 

   19.2.1 
Plant Cell Cultures 

 In principle, whole plants, plant organs, and even single cells can be used for the 
production of natural products.  Plant cell culturing  was initiated in the 1930s  [23]  
and could offer alternatives to improving the production of the secondary metabo-
lites, as natural harvesting is sometimes bulky and not feasible from an economic 
point of view. The main advantages of plant cell culturing are easy up - scaling, 
simple purifi cation schemes due to product secretion, environmental friendliness, 
and amenability to strict control with regards to meeting FDA manufacturing 
standards  [24] . Plant cell cultures are also not subject to changes in environmental 
conditions, thus the production of the desired compounds could take place at any 
location and in any season  [25] . 

 In 1959, plant cells were fi rst cultured in a 10   l glass or steel  bioreactor   [26]  
and later, in 1977, the fi rst larger scale 20   l stirred tank bioreactor of  N. tabacum  
cells was reported  [27] . Today, undifferentiated plant cell suspension cultures 
can easily be scaled up for commercial production purposes, but the produc-
tivity is often hampered by the fact that the compounds of interest are not 
produced in the undifferentiated cells. Currently 14 plant cell cultures have 
been commercialized for secondary metabolites production for pharmaceutical, 
food, and cosmetic purposes  [10, 28] . Examples are scopolamine from  Dubosia  
sp. (Sumitomo Chemical Industries, Japan), ginsenosides from  Panax ginseng  
(Nitti Denko, Japan), and paclitaxel from  Taxus  sp. (Phyton Biotech, USA and 
Samyang Genex, Korea)  [10] . 
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 One success story of a  plant cell culture produced drug  is paclitaxel (Taxol ®  
Bristol Myers Squibb). While the plant itself,  Taxus brefolia , only produces paclit-
axel at approximately 0.01% of the dry weight of the bark  [29] , the plant cell sus-
pension culture has been shown to produce steadily in the region of 140 – 295   mg/l, 
reaching 295   mg/l at a maximum under two - stage culture with the elicitation of 
methyl jasmonate and high density conditions  [11] . 

 The main constraints of using plant cell cultures for the production of secondary 
metabolites include slow growth of plant cells in comparison with microorgan-
isms, no accumulation of the desired metabolites in undifferentiated cultures, 
compartmentalization of the production of secondary metabolites, low and varia-
ble yields, and the decrease of metabolite accumulation as the cell line ages  [24, 
30 – 32] . Differentiated cells produce the same product as the plant itself, but in 
large - scale production, when aiming at an economically attractive route, the yield 
remains a bottleneck, especially for slow - growing plants. A variety of approaches, 
such as the growth of differentiated cells (root and shoot culture) and the induction 
of pathways by elicitors have had limited success so far  [22] . The plant production 
of secondary metabolites is controlled in a tissue - specifi c manner, thus the dedif-
ferentiation results in loss of production capacity  [22]  and undifferentiated cell 
cultures that are genetically unstable, and often lose, partially or totally, their ability 
to produce secondary products  [33, 34] . 

 For example, artimisinin, a potent antimalarial drug, was not found in 
cell suspension cultures of  Artemisia annua , while considerable amounts were 
detected in shoot cultures  [35, 36] . Deoxypodophylltoxin, the main lignan in  Anthr-

iscus sylvestris  was also detected in trace amounts in callus and cell suspension 
cultures  [37] .  

   19.2.2 
Transgenic Plants 

 In 1907, Smith and Towsend reported on the cause of crown gall disease of paris 
daisy ( Chysanthemum frustescens ) by  Bacterium tumefaciens . Later on the bacterium 
was classifi ed as  Phytomonas tumefaciens , and fi nally as  Agrobacterium tumefaciens , 
a gram - negative soil dwelling bacterium  [38] . At the end of the 1970s, it was 
reported that the T - DNA of this microorganism was covalently integrated into the 
plant nuclear genome in tobacco teratoma cell lines  [39, 40] . This has led to many 
studies to date. Since 1994,  transgenic technology  has been used and commercial-
ized to produce new crop products with herbicide tolerance, insect resistance, virus 
resistance, and improved post - harvest quality  [41] . Transgenic approaches can be 
applied to target a rate - limiting step through manipulation of the expression of 
individual structural genes  [5] . 

 There are two transformation approaches commonly used to produce  recom-
binant pharmaceuticals in plants . The fi rst is to subject plants to  Agrobacterium  -
 mediated transformation, particle bombardment, electroporation, and then 
secondly to infect plants with recombinant viruses that express transgenes during 
their replication in the host  [42 – 45] . Genetic transformation of medicinal plants 
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is usually carried out using  Agrobacterium rhizogenes  to obtain hairy root cultures, 
or using  Agrobacterium tumefaciens  to produce transformed cells that can be main-
tained in cell cultures or can be regenerated as whole plants  [2] . 

 In principle, the  wounded plant tissue s, caused by insect or mechanical damage, 
produce phenolic compounds, which attract  Agrobacterium  by chemotaxis to infect 
the plant cell on the wounded site and allow the transfer of T - DNA from  Agrobac-

terium  into the plant nuclear chromosome. The T - DNA contains genes that encode 
enzymes directing the plant cells to produce peculiar amino acids called  opine s, 
and express genes to direct the plant cells to produce plant hormones such as 
cytokinin and auxin. Opines are used as primary sources of carbon and nitrogen 
by the cohabiting bacteria, and  cytokinin s and  auxin  promote cell division and 
tumor formation, providing a steadily increasing supply of nutrients for the bac-
teria  [46] . The infection from  A. rhizogenes  in the wounded site will cause a number 
of small roots to protrude as fi ne hair growth and proliferate rapidly, causing hairy 
roots  [47] . T - DNA carries the  rol  and  aux  genes. The  rol  genes are responsible for 
the phenotype of hairy roots and the  aux  genes are involved in root induction by 
directing auxin synthesis  [48] . 

 The major drawbacks of this approach are the unstable gene expression, instabil-
ity of cell lines that often lose their capacity to produce target molecules over time, 
and high cost of bioreactors  [2] . For example, the alkaloid accumulation in trans-
genic  Catharanthus roseus  cell cultures quickly returns to the level of the non -
 transgenic ones  [49] . 

 The capacity to  regenerate whole plants  from single cells without changing the 
genetic features of the cells and the gene transfer mechanism via  Agrobacterium 

tumefaciens  facilitates efforts to engineer secondary metabolic pathways  [2, 50] . The 
constraint is the subsequent regeneration of transgenic plants, which remains 
problematic and time consuming. Unwanted somaclonal variation may be intro-
duced through the tissue culture regeneration system in some cases  [51] . 

 Plants have been and are still used as hosts to produce genuine and recombinant 
proteins and enzymes of industrial and pharmacological value  [52] . More than 200 
novel antibody - based potential products are in clinical trials worldwide, and the 
market demand will constrain the capabilities of existing production systems  [53] . 
One would expect the  biopharmaceuticals from transgenic plants  to be safer and 
less expensive than those from animal - based sources, which have the potential for 
contamination with human pathogens  [42] . 

 Enhanced productivity of valuable secondary plant metabolites can also be 
achieved via hairy root cultures  [25] . Hairy root cultures can be obtained from 
transformed root cultures using  Agrobacterium rhizogenes , a gram - negative soil 
dwelling bacteria. The term  “  hairy root  ”  was introduced in 1900  [54]  and the fi rst 
transformation of higher plants using  A. rhizogenes  was achieved in 1973  [55] . 

 Hairy root cultures are genetically stable, capable of unlimited growth without 
additional hormones, and have an increased capacity for  secondary metabolite s 
formation and accumulation  [24] . Genetically transformed root cultures have 
been shown to produce levels of secondary metabolites comparable to those of an 
intact plant. It has further been shown that hairy root cultures can accumulate 
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secondary metabolites that normally occur only in the aerial part of the plant. An 
example is artemisinin in  Artemisia annua   [56] . The transformation of  Artemisia 

annua  using  A. rhizogenes  carrying the cDNA encoding  FDS  ( farnesyl diphos-
phate synthase ) under a 35S  CaMV  ( caulifl ower mosaic virus ) promoter yielded 
fourfold higher artemisinin accumulation compared with untreated control plants 
 [57] . The transformation of  Atropa belladonna  with  H6H  ( hyoscyamine 6 β  -
 hydroxylase ) from  Hyoscyamus niger , under the control of the 35S CaMV pro-
moter in a binary plasmid via  A. rhizogenes  mediated transformation, resulted in 
an accumulation of scopolamine up to fi vefold higher compared with untreated 
control plants  [58] . These examples indeed show that hairy root cultures are able 
to produce the same compounds as in the plant itself. Other examples of hairy 
root cultures producing secondary metabolites can be found in the work of 
Srivasta and Srivasta  [25] . 

 Another advantage is that  transformed root s are able to regenerate whole viable 
plants, maintain their genetic regeneration, and in addition produce secondary 
metabolites that are not present in the parent plant  [59] . Furthermore, they show 
fast auxin - independent growth and are suitable for adaptation to bioreactor systems 
 [25] . In addition to production of secondary metabolites, hairy roots are also used 
to produce human therapeutic proteins, vaccines, and diagnostic monoclonal 
antibodies. For example, hairy root cultures of potato carrying pBSHER containing 
the gene for  hepatitis B surface antigen  ( HBsAg ) expressed higher levels of HBsAg 
compared with control cultures  [58] . 

 Despite the potentials discussed, challenges during large - scale cultivation, such 
as unusual rheological properties of hairy root cultures, have to be addressed. 
Non - optimal fermentation made it necessary to investigate novel approaches to 
apply hairy root cultures to fermentor  [25]  and process design  [24] . 

 In conclusion, the use of hairy roots as factories for the production of novel 
plant - based bioactive compounds, vaccines, antibodies, and other therapeutic pro-
teins offers good prospects for feasibility of commercial production.   

   19.3 
Optimizing Biochemical Pathways 

   19.3.1 
Strategies and Goals of Metabolic Engineering 

  Metabolic engineering  is generally defi ned as the  redirection of one or more enzy-
matic reactions to produce new compounds in an organism, to improve the pro-
duction of existing compounds, or to mediate the degradation of compounds   [60] . 
Metabolic engineering of plants offers interesting perspectives to improve the 
productivity of the plant as a cell factory. This approach may create new opportuni-
ties in agriculture, environmental applications, production of chemicals, and 
medicines  [22, 51] . The main goal of metabolic engineering in general is to 
produce the desired natural products in a sustainable and economically attractive 
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way  [24] . Several more specifi c goals of metabolic engineering are listed in Table 
 19.2 .   

 The production level of a compound of interest that is present in trace amounts 
can be enhanced through the following: by increasing the fl ux of precursors; by 
blocking a competitive (parallel) pathway using the same precursor or intermedi-
ate compound; by introducing new routes of metabolism; by overcoming rate -
 limiting steps; by reducing fl ux through enhancing competing pathways; by 
over - expressing regulatory genes or transcription factors that induce the pathway; 
by inhibiting or limiting catabolism of the molecule; or by increasing the number 
of specialized cells producing the compound  [2, 62] . 

 Some of the scientifi c challenges comprise a better understanding of the partly 
known secondary metabolite biosynthetic pathways on a genetic level, the genera-
tion of heterologous organisms with desirable biosynthetic characteristics, and 
optimized tools for pathway manipulation such as vectors, synthetic genes, and 
regulating elements  [62] . Moreover, biosynthetic pathways are often species -
 specifi c. Features such as cell compartmentalization, tissue differentiation, and 
multi - enzyme complexes, will make the outcomes unpredictable.  

   19.3.2 
Metabolic Pathways of Interest 

 A comprehensive understanding of different  metabolic pathway s and their genetic 
control is essential for the application of a genomics approach to the improvement 
of medicinal plants  [5] . In this chapter we confi ne the discussion to the metabolic 

  Table 19.2    Important goals of metabolic engineering in general. 

   Physiological understanding   

  Novel compounds    To yield a novel compound in a plant and other precursors by 
introducing the appropriate heterologous genes  [2]  
 To give a new trait (color, taste, smell) to food, fl owers or ornamental 
plants  [22]   

  To increase    To improve production of a desired compound or enzyme in a cell 
culture and also in the plant itself 
 To achieve production in a related plant species or even in 
microorganisms 
 To improve agronomic traits, such as resistance of a plant to various 
stresses, pests, diseases, and to increase the seed yield of a crop plant 
through the expression of certain metabolites  [22, 61]   

  To decrease    To decrease levels of noxious or antinutritional factors in food and feed 
crops  [2]   

   Regulatory understanding  

 To improve our understanding of pathways regulation and fl ux when some of the 
intermediate pathways increase in abundance beyond their usual concentration range  [61]   
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pathways of medicinal compounds, among other pathways of interest (Figure 
 19.2 ).   

 Most  secondary metabolite s are derived from the shikimate, terpenoid, and 
polyketide pathways. The shikimate pathway is the major source of phenylpropa-
noids and aromatic compounds  [63, 64] , such as fl avonoids, coumarins, isoquino-
line and indole alkaloids, lignans, lignins, and anthocyanins. 

 The terpenoid pathway leads to more than one - third of all known secondary 
metabolites, including mono - , seseui - , di - , tri - , and tetraterpenes. It is also the 
source of the C5 - building block (isoprene) in many skeletons from other biosyn-
thetic origins, such as anthraquinones, naphthoquinones, cannabinoids, furano-
coumarines, and terpenoid indole alkaloids  [65] . 

 The  polyketide pathway  is a rich source of bioactive molecules such as anthra-
noids. It is attractive as a model for metabolic engineering studies because the 
complex structure results from simple C2 units combined in different ways and 
the modular construction of enzymatic catalysts allows control of enzyme struc-
ture  [62] . 

     Figure 19.2     Simplifi ed biosynthetic pathways of primary and secondary metabolism in plants 
 (adapted from reference  [5] ).   
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 The complexity of a metabolic pathway and some strategies to engineer the 
pathway are illustrated in Figure  19.3 . It is supposed that a basic skeleton  S  ( sub-
strate ) is present in which three functional groups can be introduced. If highly 
specifi c enzymes would catalyze all steps, 12  enzyme s ( E ) (E1 to E12) could be 
involved in the formation of three different products with one functional group, 
three different products with two functional groups, and one fi nal product with 
all three functional groups. If the specifi city of the substrate is broad, it is likely 
that three different enzymes will be adequate. Heterologous genes (E13) can also 
be introduced into the plant metabolic pathway, which could catalyze all three 
functions of the substrate (S1) into product  “ S1,2,3. ”     

   19.3.3 
Synthetic Biology 

  Synthetic biology  is a rapidly growing multidisciplinary fi eld among biologists, 
chemists, physicists, engineers, and mathematicians  [67] . It is defi ned as the 
 design and construction or engineering driven building of new or artifi cial 

     Figure 19.3     Schematic biosynthetic network: S, basic skeleton to which functional group 1, 2, 
and 3 are added; E1 – E13, enzymes that catalyze biosynthetic steps  (adapted from reference 
 [66] ).   
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biological components or increasingly complex biological entities, such as 
enzymes, genetic circuits, and cells, or the redesign of existing biological 
systems for novel applications   [68, 69] . The goals are to build complex systems 
into specifi c hosts  [69] , to engineer synthetic organisms  [69, 70] , to improve 
understanding of biological systems, and to produce bio - orthogonal systems 
with new functions  [67] . 

 The distinguishing element that differentiates synthetic biology from tradi-
tional metabolic engineering is the focus on the design and technological 
construction of core components (the enzyme, genetic circuit, metabolic 
pathway, etc., parts), which can be modeled, understood, and tuned to meet 
specifi c criteria. The assembly of these components into integrated systems, 
which enables a systematic forward - engineering of (or parts of) biological 
systems for improved and novel applications, is a second key issue of synthetic 
biology  [68, 69] . 

 Synthetic biology is categorized into two broad classes. One uses non - natural 
molecules to reproduce emergent behaviors from natural biology, with the goal of 
creating artifi cial life. The other seeks interchangeable parts from natural biology 
to assemble into systems that function unnaturally  [71] . 

 The knowledge of these tools and methods may enable synthetic biologists to 
design, fabricate, integrate, test, and construct  artifi cial biological system s that 
originate from the insights discovered by experimental biologists and their holistic 
perspectives  [70] . 

 Although synthetic biology offers promising applications for novel compounds 
and novel approaches, the success so far is rather limited as it is quite a young 
science. It is further hindered by the fact that the production processes of the most 
effective biological components (promoters, gene, plasmids, etc.) have been pat-
ented. Royalty payments increase the costs, which make it economically no longer 
attractive  [68] . Another drawback is that living systems are highly complex. Cur-
rently, biologists lack information about how the integration of living systems 
works  [70] . The success of synthetic biology depends on its capacity to surpass 
traditional engineering. It should blend the best features of natural systems with 
artifi cial designs that are extensible, comprehensible, user - friendly, and imple-
ment stated specifi cations to fulfi ll user goals  [70] .   

   19.4 
Metabolic Engineering Strategies and Techniques in Medicinal Plant Biotechnology 

 The major metabolic engineering strategies and techniques applied in medicinal 
plant biotechnology are discussed in detail in this section (see also Figure  19.1 ). 
They include up -  or down - regulating of pathways, redirecting common precursors, 
targeting metabolites to specifi c cellular compartments, and creating storage of 
overproducing secondary metabolites. Examples of techniques used and their 
application are given in Table  19.3 .   
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  Table 19.3    Techniques used in metabolic engineering and their applications. 

   Technique     Genes/enzymes     Plant species     Target compounds/
goals  

   Ref.  

  Single transgene 
(biotransformation)  

   Codeinone 
reductase  ( COR )  

   Papaver 

somniferum   
  Increase of morphine     [72]   

      CYP80B3     Papaver 

somniferum   
  Increase of morphine 
alkaloid  

   [73]   

  Multiple transgene 
insertions  

  10 genes     Oryza sativa     Resistant to multiple 
pathogens, insects, 
and herbicides, and 
antibiotic marker free  

   [74]   

  Polycistronic 
vectors (artifi cial 
chromosomes)  

  Cholera toxin 
 β  - subunit ( CTB 

gene )  

   Nicotiana 

tabacum   
  Production of cholera 
toxin  β  - subunit  

   [75, 76]   

  Transcription 
factor  

  ORCA     Catharanthus 

roseus   
  Increase of terpenoid 
indole alkaloid  

   [77]   

  Sense/antisense 
suppression  

  Antisense 
 CYP80B3   

   Papaver 

somniferum   
  Decrease of 
benzylisoquinoline 
alkaloids up to 84% 
of total alkaloid  

   [73]   

   Virus inducing 
gene silencing  
( VIGS )  

   Phytoene 
desaturase  
( PapsPDS )  

   Papaver 

somniferum   
  Reduction of 
transcript level of 
endogenous 
PapsPDS and 
photobleach 
phenotype; and 
assessing gene 
function  

   [78]   

  Putrescine 
 N  -
 methyltransferase 
(PMT)  

   Nicotiana 

tabacum   
  Reduction of nicotine     [79]   

  Repressor silencing    Hydrolases, 
polygalacturonase 
and pectinesterase  

   Solanum 

lycopersicum   
  Altering fruit 
ripening  

   [80]   

  RNAi     Berberine bridge 
enzyme  ( BBE )  

   Eschscholzia 

californica   
  Accumulation of 
(s) - reticuline  

   [81]   

   Salutaridinol 
7 -  O  -
 acetyltransferase  
( SalAT )  

   Papaver 

somniferum   
  Accumulation of 
salutaridinol  

   [82]   

   δ  - Cadiene synthase     Gossypium 

hirsutum   
  Reduction of 
gossypol  

   [83]   
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   19.4.1 
Upregulating of Pathways (Overexpression) 

  Transcription factor s (in multi - enzyme pathways) are regulatory proteins that can 
be used to regulate multiple steps or even to modulate an entire pathway in order 
to produce a signifi cant yield of a desired product through sequence - specifi c DNA 
binding and protein – protein interactions  [61, 84] . They can act as activators or 
repressors of gene expression, which mediate, respectively, an increase or a 
decrease in the accumulation of messenger RNA  [85] . They are also able to regulate 
steps for which the enzymes are unknown  [84] . Using this approach it is often 
necessary to increase precursor availability and to understand the coordination of 
multiple branches or sections of the metabolic pathway. The use of transcription 
factors requires integrated information from genomics, transcriptomics, proteom-
ics, and metabolomics  [24] . 

 Several transcription factors have now been identifi ed. A relevant example is 
transcription factor MYB12, a fl avonol - specifi c regulator of the phenylpropanoid 
biosynthesis in developing seedlings. Total fl avanol content of the seed was 
increased when MYB12 was expressed in developing  Arabidopsis thaliana  seed-
lings. The expression of the genes encoding the four fl avonoid biosynthetic 
enzymes was upregulated, increasing the fl ux through the fl avanone pathway 
 [86] . Three transcription factors    –    ORCA1, ORCA2, and ORCA3 (octadecanoid -
 responsive  Catharanthus  AP2 - domain)    –    have been identifi ed in the medicinal 
plant  Catharanthus roseus  and are involved in biosynthesis of terpenoid 
indole alkaloids. They belong to the AP2/ERF transcription factor family. The 
overexpression of ORCA3 in  C. roseus  cultured cells increased the expression 
of the terpenoid indole alkaloid biosynthesis genes  TDC  ( tryptophan decarboxy-
lase ), STR,  CPR  ( cytochrome P450 reductase ),  D4H  ( desacetoxyvindoline 
4 - hydroxylase )  [87]  and  SLS  ( secologanin synthase )  [88] . Moreover, ORCA3 also 
regulated two genes encoding enzymes ( AS α  ,   α  - subunit of anthranilate synthase ; 
and  DXS ,  D - 1 - deoxyxylulose 5 - phosphate synthase ) in the primary metabolism 
leading to terpenoid indole alkaloid precursor formation  [77] . 

 Next to frequently studied pathways, such as the phenylpropanoid biosynthesis, 
and the well - characterized MYB transcription factor family, fi nding a transcription 
factor that acts on specifi c pathway genes is very challenging  [61] . Transcription 
factors are diffi cult to identify in non - model species  [84] . An alternative is to design 
synthetic transcription factors, which target one or more genes of choice  [89] . As 
an example, we mention the design of a synthetic  zinc fi nger protein transcription 
factor  ( ZFP - TF ) targeted to a methylphytylbenzoquinol methyltransferase (VTE3). 
The expression of the ZFP - TF increased the activity of native  γ  - methyltransferase 
(VTE4) and the  α  - tocopherol content in  Arabidopsis thaliana  seeds  [90] . Transcrip-
tion factors, natural or synthetic, are used only if the pathway is endogenous to 
the plant  [61] .  
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   19.4.2 
Redirecting Common Precursors 

 Many branching points are found in a biosynthetic pathway where enzymes 
compete for a  common precursor . Increasing and redirecting the precursor pool 
towards the biosynthesis of the target compounds can theoretically increase their 
production. This can be achieved by blocking the competitive pathway or by induc-
ing overexpression of genes in the precursor pathway  [65] . 

 For example, overexpressing the gene that encodes taxadiene synthase in the 
tomato, a precursor in the carotenoid pathway, increased the production of taxa-
diene in a tomato mutant. The production was 660 – 20   000 times higher than in 
 Arabidopsis thaliana   [91] . By overexpressing genes in precursor pathways in both 
peppermint  [92]  and lavender  [93]  an increase in the monoterpene fraction of the 
essential oils was found. 

 However, owing to tight regulation of metabolite accumulation, this approach 
may also have a limited impact on target products. The increase of intermedi-
ate precursor resulted in a limited accumulation of alkaloid target product in 
 C. roseus   [94] . In this case, the direct overexpression of related genes in the 
alkaloid pathway was shown to be more effective at increasing the alkaloid 
accumulation in  C. roseus   [95] . The effect seems to be temporary. It might be 
due to a result of the same factors, which induce variability in non - transgenic 
plants  [24] .  

   19.4.3 
Targeting Metabolites to Specifi c Plant Cell Compartments 

  Targeting gene expression  to a specifi c cellular compartment or organelle that 
contains the precursors could increase the level of the target compounds. Plants 
are able to express the transgene with organelle targeting signals from the nuclear 
DNA and the resulting recombinant proteins will be targeted to the appropriate 
organelles. Specifi c amino acid sequences required for targeting of proteins to 
particular organelles and for retention of proteins in organelles have been identi-
fi ed  [51] . Thus targeting the enzymes to the compartment of the substrate seems 
feasible. However, the products formed may cause toxicity problems in a compart-
ment other than the usual one  [65] . 

 Using this approach, overexpression of a target gene, either in plastids or the 
cytosol, allows transport of a suffi cient pool of common precursors in the right 
direction. This leads to a more than 1000 - fold increase in concentration of the 
sesquiterpenes patchouli alcohol and amorpha - 4,10 - diene, and a 10 – 30 - fold 
increase of the monoterpene limonene in transgenic tobacco plants compared with 
untreated control plants  [96] .  
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   19.4.4 
Creation of Storage of Overproduced Secondary Metabolites 

 A plant may have the capacity to produce secondary metabolites but sometimes it 
lacks a proper subcellular compartment to store them  [97] . Modifi cations to meta-
bolic  storage of products or secondary metabolic pathways  have been generally 
more successful than manipulations of primary and intermediary metabolism 
 [98, 99] . The genes controlling the formation of subcellular compartments have 
been isolated and characterized in plants  [100] . 

 For example, expressing of the  Or  gene encoding a DnaJ cysteine - rich domain -
 containing protein led to the formation of large membranous chromoplasts in 
caulifl ower curd cells  [100] . The expression of the same gene in transgenic potato 
under the control of a potato granule - bound starch synthase promoter increased 
the total carotenoid up to sixfold compared with the original, non - transgenic 
plants  [100] .  

   19.4.5 
Downregulating of Pathways (Silencing) 

 The production of a certain compound can be reduced by decreasing the fl ux 
towards that product by reducing the level of enzyme in the pathway, increasing 
catabolism, and increasing fl ux into competitive pathways  [2, 66] . 

 A particular step in the pathway that leads to undesirable compounds can be 
blocked by suppressing genes that upregulate the pathway or by increasing their 
catabolism  [2] . Antisense, co - supression, and RNA interference (RNAi) methods 
are used to block, to reduce or to eliminate levels of undesirable compounds. This 
so called silencing can be targeted to specifi c plant tissues and organs with minimal 
interference of the normal plant life cycle, by using tissue or organ - specifi c RNAi 
vectors. Mutants with the RNAi effect have been shown to be stable for at least 20 
generations  [101] .   

   19.5 
Challenges in Plant Metabolic Engineering 

   19.5.1 
Unexplored Regulation of Secondary Metabolism 

 The lack of complete understanding of the regulation of  secondary metabolism , 
especially in the complex alkaloid biosynthesis, hinders the determination of an 
effective metabolic engineering strategy to achieve a specifi c production pheno-
type. The complexities comprise a pathway compartmentalization, the existence 
of multiple alkaloid biosynthetic pathways and the regulatory control mechanisms 
 [102] . To date, only four biosynthetic routes of alkaloid subclasses have been par-
tially characterized, in particular the benzylisoquinoline, monoterpenoid indole, 
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purine, and tropane alkaloids  [102] . This could be ascribed to the limited genome/
cDNA sequence information of medicinal plants  [5] .  

   19.5.2 
Pathways Are Often Species Specifi c 

 A number of  genes encoding enzymes , which control key steps of secondary 
metabolic pathways, have been cloned from a number of a medicinal plant species 
using classical and modern genomics approaches  [5] . However, this represents a 
small fraction of a total of about 1000 plant genes known to function in  secondary 
metabolism   [103] . The progress in isolating genes involved in secondary metabo-
lism is limited due to species specifi city, the diffi culty in producing large numbers 
of mutants, their intermediate precursor availability, their analysis, and to the 
instability of secondary metabolites caused by environmental factors  [104] . The 
major bottleneck for secondary metabolism will remain, as per defi nition, species 
specifi c. Only early parts of the pathways are common to most plants, for example 
in the fl avonoid and terpenoid biosynthetic pathways, thus homology between 
genes can be used for strategies to clone genes from other plants  [104] . The genes 
encoding enzymes involved in the more specifi c  “ decoration ”  of the basic skeletons 
can only be studied at the level of the producing plant  [105] .  

   19.5.3 
Cell Compartmentalization and Tissue Differentiation 

 Plant cells have a complicated intercellular organization with metabolite fl ow 
between compartments highly regulated and orchestrated depending on the bio-
synthetic needs of the plants  [106] . They have numerous organelles of which some 
are not found in mammalian or yeast cells  [51] . The highly compartmentalized 
nature of enzymes, substrate precursors, and metabolic intermediates also con-
tributes to the complexity of secondary metabolites production, which is regulated 
at a different level  [2] . 

 Plants also have numerous specialized and differentiated organs in which physi-
ological processes and gene expression may differ substantially. Next to organelles, 
the  compartmentalization of secondary metabolite pathways  also occurs at the 
subcellular level  [107] . Furthermore, temporal and developmental processes can 
profoundly infl uence whether and when a transgene is active. Thus, the issues of 
compartmentalization complicate the targeting gene strategy. Moreover, if the 
engineered plants are going to be propagated as crops, environmental effects may 
add to the level of variability and unpredictability, which is not encountered in a 
fermentor based system  [51] . 

 There is increasing evidence that  intra -  and intercellular translocation of en -
zymes  are key elements in secondary metabolite production. Localization of 
enzymes to diverse cellular compartments showed the importance of protein tar-
geting in the assembly of the alkaloid pathway  [2] . Alkaloids are generally stored 
in specifi c types of compartments due to their cytotoxicity and probable role in 
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plant defense responses. The subcellular compartmentalization of alkaloid pathway 
enzymes is extremely diverse and complex because of the cell type - specifi c localiza-
tion of the gene transcripts, enzymes, and metabolites  [108] . 

 Other examples are phenylpropanoid derivatives. Their biosynthesis occurs in 
the cytoplasm, but the precursors are derived from metabolism in other organelles, 
including the chloroplasts and mitochondria  [106] .  

   19.5.4 
Unpredicted or Unexpected Outcome 

 The use of metabolic engineering approaches in medicinal plant species to improve 
the yield of pharmaceutical products has been, and still is, a challenge. There are 
several limitations such as gene silencing, unpredictable results due to complex 
network genes, and no increase in concentration of desirable metabolites up to 
the level of commercialization  [5] . Techniques used to introduce new genes into 
plants also do not allow a prediction about the site of integration and the level of 
gene expression, even when a strong promoter is used  [65] . 

  Single - enzyme perturbations of alkaloid pathways  resulted in unexpected meta-
bolic consequences, suggesting the existence of key rate - limiting steps, potential 
multi - enzyme complexes, or unsuspected compartmentalization  [108] . Over -
 expression of COR1 (codeinone reductase), the fi nal enzyme in morphine biosyn-
thesis, increased the morphine and codeine contents in transgenic poppy  [109] . 
However, thebaine, an upstream metabolite in the 23 branch pathways, was also 
unexpectedly signifi cantly increased. The knock down of COR1 with RNAi tech-
nology would expect to suppress 23 upstream biosynthetic steps and the accumula-
tion of codeinone and morphinone, the immediate precursor of COR. The amount 
of morphinan alkaloids decreased, while the biosynthesis of ( S ) - reticuline, an early 
upstream metabolite in the pathway, was increased instead of the target com-
pounds codeinone and morphinone  [110] . The complexity and redundancy of 
many biosynthetic pathways coupled with incomplete knowledge of their regula-
tion could lead to an unpredictable outcome from a targeted metabolic engineering 
strategy  [24] . 

 Selected case studies using different approaches and strategies in metabolic 
engineering are discussed in the next paragraph.   

   19.6 
Metabolic Engineering Applications in Medicinal Plant Biotechnology 

   19.6.1 
Case Study: Podophyllotoxin Production in  Anthriscus  s ylvestris  

  Anthriscus sylvestris  (L.) Hoffm. (Apiaceae) is a common wild plant in Northwest 
Europe that accumulates considerable amounts of lignans. Deoxypodophyllo-
toxin, an aryltetralin - lignan is the main attractive constituent that is much more 
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abundant in the plant kingdom than  podophyllotoxin , can be used as a precur-
sor for the production of podophyllotoxin. Podophyllotoxin is used as a pre-
cursor for the semi - synthesis anticancer drugs: Etoposide phosphate and 
Teniposide  [111] . To date, podophyllotoxin has been obtained by isolation from 
 Podophyllum  species. In the future, the availability of podophyllotoxin from this 
source is likely to become a major bottleneck.  Podophyllum  species are on the 
endangered species list, proving that the increasing demand of podophyllotoxin 
is a serious threat to the plant  [112] . An alternative source of podophyllotoxin 
may be obtained by (biotechnological) hydroxylation of deoxypodophyllotoxin at 
the C7 position (see Figure  19.1 ). Human cytochrome P450 3A4 in  E. coli  DH5 α  
selectively hydroxylates deoxypodophyllotoxin at the C7 position yielding podo-
phyllotoxin  [113] . Studies to transform  A. sylvestris  with this cytochrome are in 
progress.  

   19.6.2 
Case Study: Scopolamine Biosynthesis in  Nicotiana  t abacum  

  Scopolamine  and  hyoscyamine  are tropane alkaloids. They form an important 
class of plant derived anticholinergic compounds occurring in several genera of 
the Solanaceae, such as  Hysoscyamus ,  Atropa ,  Duboisia ,  Scopolia , and  Datura   [12, 
108] . Scopolamine has a higher commercial market value than hyoscyamine but 
has a lower yield from plants than hyoscyamine  [12] . The world demand for sco-
polamine is estimated to be about ten times higher than hysocyamine and its 
racemic form atropine. The main sources of raw material worldwide are  Duboisia  
leaves containing 2 – 4% of total alkaloids, with more than 60% scopolamine and 
30% hyoscyamine  [15] . Up to 6% of scopolamine has been achieved by conven-
tional cultivation of selected varieties in Australia, Equador, and Brazil, producing 
1   t/ha of plant material for industrial alkaloid extraction  [15] . 

 The heterologous expression of  PMT  ( putrescine  N  - methyltranferase ) from 
 Nicotiana tabacum  in  Scopolia parvifl ora  yielded an 8 - fold increase in scopolamine 
and a 4.2 - fold increase in hyoscyamine production  [114] . A similar effect has been 
achieved in  Hyoscyamus muticus  and  Datura metel   [115] . Surprisingly, this PMT 
expression has no effect on alkaloid production when it is expressed in other 
tropane alkaloid producing hairy root cultures of  Hyoscyamine niger ,  Atropa bella-

donna , and  Duboisiana hybrid   [16, 116, 117] . It was suggested that PMT expres-
sion in the roots was insuffi cient to boost the tropane alkaloid synthesis of these 
plants. Overexpression seems to be species related due to a different, specifi c 
post - translational regulation of the endogenous enzyme with respect to the 
foreign one  [117] . 

 The constitutive expression of  H6H  ( hyoscyamine 6 β  - hydroxylase ) from  Hyo-

scyamus niger  in  Atropa belladonna , a plant that normally accumulates hyoscyamine, 
converts hyoscyamine into scopolamine up to 1.2% dry weight  [118] . The alkaloid 
composition of aerial parts of mature plants changed from over 90% hyoscyamine 
in controls and wild type plants, to almost exclusively scopolamine in transgenics 
 [118] . In transgenic hairy roots of  Atropa belladonna , up to a 5 - fold scopolamine 
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increase was observed  [119] . In  Hyoscyamus muticus  hairy root, expressing the 
H6H gene, up to a 100 - fold increase of scopolamine was found, while the hyo-
scyamine content remained unaltered  [120] . 

  Transgenic tobacco plant s expressing constitutively H6H were fed with hyo-
scyamine and 6 β  - hydroxyhyoscyamine. These precursors were converted into 
scopolamine in the leaves of the plants  [118] . The hairy root cultures of  Nicotina 

tabacum , which do not produce hyoscyamine, were used to express the H6H 
gene from  Hyoscymanus niger . The cultures successfully converted added hyo-
scyamine into scopolamine. They showed effi cient uptake of hyoscyamine 
(average of 95%) from the culture medium and a higher rate of bioconversion 
of hyoscyamine into scopolamine (10 – 45%). Up to 85% of the total scopolamine 
was released into the culture medium  [121] . This was in contrast to the normal 
metabolic behavior of tropane alkaloid - producing hairy roots in which the scopo-
lamine remained accumulated in the root tissues  [122] . Feeding exogenous hyo-
scyamine to cell suspension cultures, which were obtained from the hairy root, 
showed considerable capacity to convert hysocyamine into scopolamine and the 
product was secreted into the culture medium  [123] . The scaling up of the trans-
genic cells grown in a 5   l turbine stirred tank reactor in a batch mode yielded 
scopolamine up to a 1.6 - fold higher than the small - scale cultures. Almost 18% 
of the hyoscyamine added to the medium was transformed into scopolamine, 
which showed a 65% increase with respect to the same alkaloid obtained by 
bioconversion in shakes fl asks  [15] . 

 The constitutive  co - expression of genes  encoding the rate - limiting upstream 
enzyme PMT and the downstream enzyme H6H of scopolamine biosynthesis 
yielded only a modest increase in alkaloid accumulation when it was expressed 
alone, but exhibited a synergistic effect on alkaloid levels when expressed together 
 [16] . It resulted in the highest production of scopolamine in hairy root culture 
reported of 411   mg/l. It is a 10 - fold increase over control cultures and a 2 – 3 - fold 
increase over cultures that expressed only H6H  [16] .  

   19.6.3 
Case Study: Genistein Production in Transgenic  Arabidopsis , Tobacco, Lettuce, 
Corn, Petunia, and Tomato 

  Genistein  is a common precursor of the isofl avonoid biosynthesis, occurring in 
particular in the subfamily Papilionoideae of the Fabaceae  [124] . Isofl anoids are 
interesting because of their pharmaceutical and nutraceutical activity that attract 
considerable interest with the prospect of introducing them into vegetables, grains, 
and fruits for dietary disease prevention  [125] . 

 Genistein production in nonlegume plants has been performed but as yet 
with unsatisfactory yields. This might be due to the competitive use of narigenin 
between  isofl avon syntase  ( IFS ) and the endogenous fl avonoid pathway 
 [125 – 127] . 

 Soy products are the major dietary sources of  isofl avonoid s (genistein) for 
humans. The IFS isolated from soybean has been introduced into  Arabidopsis 
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thaliana , corn ( Zea mays ), and tobacco ( Nicotiana tabacum )  [127] . There was no 
accumulation of free genistein in  Arabidopsis , but genistein was glycosylated with 
glucose - rhamnose - genistein and rhamnose - genistein  [125] . 

 The overexpression of soybean IFS in tobacco, petunia ( Petunia hybrida  Vilm), 
and lettuce ( Lactuca sativa  L.) resulted in  genistein  accumulation in transgenic 
plants  [128] . Another approach was the introduction of a heterogeneous  phenyla-
lanine ammonia - lyase  ( PAL ) and IFS into genetically manipulated plants. This 
increased the genistein content in tobacco petals (1.80 - fold) and lettuce leaves 
(1.5 - fold)  [128] . The overexpression of IFS soybean in tomato ( Solanum lycopersi-

cum  L) resulted in the presence of genistein 7 -  O  - glucoside as the major isofl avone 
metabolite in the transgenic plants  [129] .  

   19.6.4 
Case Study: Expression of Spearmint Limone Synthase in Lavender 

 Essential oil quantity and quality can be regulated by metabolic engineering  [92] . 
In principle, it is possible to engineer the biosynthesis of monoterpenes in order 
to increase or to modify the  essential oil  profi les in the target plant  [130] . For 
example, the expression of a sense of the  1 - deoxy - D - xylulose - 5 - phosphate  ( DXP ) 
reductoisomerase cDNA, and with an antisense of menthofuran synthase cDNA 
under the control of CaMV 35S promoter, resulted in up to 50% more essential 
oil in  Mentha     ×     piperita  L. without changing the composition of the monoterpenes 
as compared with the wild - type  [92] . Meanwhile the expression of DXP synthase 
in  Lavandula latifolia  increased the essential oil up to 3.5 - fold in leaves and up to 
7 - fold in fl owers as compared with the control, without obvious deleterious effects 
on plant development and fi tness  [93] . 

 Until now, studies on the expression of monoterpene synthase in transgenic 
aromatic plants have been scarce and have only been focused on mint species 
transformed with  limonene synthase  ( LS ). LS catalyzes the stereo - specifi c cycliza-
tion of geranyl diphosphate to yield the monocyclic monoterpene limonene  [130] . 

  Spike lavender  ( Lavandula laftifolia  Med.) is an aromatic shrub that is cultivated 
worldwide for oil production, which has limonene as a minor constituent (0.5 –
 2%). Overexpression of the LS gene from spearmint ( Mentha spicata ) in spike 
lavender under the regulation of the CaMV35S constitutive promoter showed 
more than 450% increase of limonene content in developing leaves as compared 
with the control  [130] .  

   19.6.5 
Case Study: Artemisinin Biosynthesis in  Artemisia  a nnua  

 In the early 1980s, efforts began to establish  Artemisia annua  L. cultures that 
produced  artemisinin   [131] . A range of variable but always low  artimisinin  
levels were found in callus, shoot, and root cultures but no artemisinin in cell 
suspension cultures, suggesting that some degree of differentiation is required 
for the production  [132] . Transformation of  Artemisia annua  with  Agrobacterium 
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rhizogenes  resulted in hairy root cultures that produced artemisinin, and currently 
many efforts are directed toward optimizing production in hairy root cultures 
 [133] . 

 Several key genes involved in the biosynthesis of artemisinin have been intro-
duced in  A. annua . Approaches with genetic engineering have been focused on 
the overexpression of cloned key enzymes involved in the biosynthesis, such as 
 farnesyl diphosphate synthase  ( FDS )  [134]  and  amorpha - 4,11 - diene synthase  
( AMS )  [135] . 

 Genetic transformation and regeneration of  A. annua  has been established to 
introduce genes of interest via  A. tumefaciens   [136] .  A. annua  expressing FPS from 
 Gossypium arboreum  accumulated higher levels of artemisinin compared with  A. 

annua  expressing the FPS from  A. annua .  A. annua  expressing FPS accumulated 
up to 10.08   mg/g DW artemisinin  [136 – 138] . 

 Hairy root cultures of  A. annua  were established by transforming it via  A. rhizo-

genes  carrying the farnesyl diphosphate synthase (FDS) gene. The artemisinin 
content in the transgenic plants, which were regenerated from the hairy root cul-
tures, was signifi cantly higher than in the control plant  [96] . 

 Despite all the genetic engineering attempts, the mean of production of artem-
isinin is still mainly from the plant itself. Recently, the FDA has approved 
Coartem ®  (Novartis) as the fi rst  artemisinin - based combination treatment  ( ACT ) 
for malaria in the United States  [139] . Novartis has stimulated the cultivation of 
 Artemisia annua  in more than 1000   hectares in Kenya, Tanzania, and Uganda. In 
addition, it has also cultivated in China, where, in total, it reaches up to 10   000   hec-
tares  [140] .  

   19.6.6 
Case Study: Morphine Biosynthesis in  Papaver  s omniferum  

  Papaver somniferum  remains the sole source of  morphine . The commercial chemi-
cal synthesis of morphine, codeine, and other benzylisoquinoline alkaloids is not 
economically feasible due to the complexity of the molecule and multiple chiral 
centers  [12] . 

 Reticuline is an essential precursor leading to the biosynthesis of  benzylisoqui-
noline alkaloid s such as codeine, berberine, and morphine. One of the strategies 
to increase the fl ux into morphinan alkaloid is by blocking the  BBE  ( berberine 
bridge enzyme ). Blocking the BBE will increase the ( S ) - reticuline concentration. 
The expression of an antisense - BBE construct in transgenic opium poppy plants 
indeed showed increased fl ux into the morphinan and the tetrahydrobenzylisoqui-
noline branch pathway  [141] . 

 Another strategy is to increase the precursor pool leading to the formation of 
( S ) - reticuline, which is ( S ) -  N  - methylcoclaurine 3 ′  - hydrolase. The overexpression of 
cytochrome P450 monooxygenase ( S ) -  N  - methylcoclaurine 3 ′  - hydrolase (CYP80B3) 
resulted in an up to 450% increase of total morphinan alkaloids  [73] . The suppres-
sion of this gene by an antisense construct led to a reduced total alkaloid content 
in the transgenic poppy  [73] . 
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 The existence of multi - enzyme complexes has been proposed for fl avonoid 
 [142 – 144]  and polyamine metabolism  [145] . The occurrence of multi - enzyme com-
plexes also seems to exist in the morphine biosynthesis  [108] , therefore the meta-
bolic engineering strategies have to be developed carefully. However, not all 
enzymes of the morphinan branch are necessarily involved in such a macromo-
lecular complex  [146] . 

 A further approach is to increase  salutaridinol , a precursor of thebaine, by 
overexpressing  salutaridinol 7 -  O  - acetyltransferase  ( SaIAT ) and  salutaridine 
reductase  ( SaIR ). RNAi - silenced SalAT in opium poppy plants showed an accu-
mulation of salutaridine instead of salutaridinol, which is normally not abun-
dant in the plants  [82] . Salutaridine may be channeled to thebaine through an 
enzyme complex that includes SaIR and SaIAT. Recent results showed that 
there is an interaction between SaIR and SaIAT  [146] . Morphine, codeine, and 
thebaine levels were increased in both SaIAT overexpressing and SaIAT RNAi 
plants  [82] . 

 The  codeinone reductase  ( COR ) converts codeinone into codeine. Hypotheti-
cally, the morphine production can be increased by blocking this enzyme using 
the RNAi technique. On the contrary, there was an accumulation of ( S ) - reticuline 
instead of morphine, codeine, oripavine, and thebain  [110] . The reasons are 
unknown, but there were some speculations. It was suggested that there was a 
feedback mechanism preventing intermediates from the general benzylisoquino-
line synthesis entering the morphine - specifi c branch  [2] . The impairment of a 
required metabolic channel composed of morphinan branch pathway enzymes 
resulted in accumulation of alkaloid intermediates produced by enzymes that 
were not part of the same complex  [108] . The COR could be part of a multi -
 enzyme complex, which cannot function if one of the enzymes is removed  [12] . 
It might be that the side effect of silencing COR was the suppression of 
1,2 - dehydroreticuline reductase  [108] . The potential homology between the two 
reductases could lead to cosilencing  [108] . The COR seems to be an important 
target for metabolic engineering. The overexpression of COR in  Papaver somni-

ferum  yielded a 15% increase of benzylisoquinoline alkaloids as compared with 
the high - yielding control genotypes and a 30% increased as compared with the 
non - transgenic control  [72] .  

   19.6.7 
Case Study: Gossypol Reduction in Cottonseeds by Blocking  δ  - Cadinene Synthase 

  Cotton  ( Gossypium hirsutum  L.) could become, apart from its existing production, 
a nutritionally important crop, not only in developed countries but also in many 
developing countries where malnutrition and starvation are widespread and it is 
mainly used for fi ber production. The plant produces approximately 1.65   kg of seed 
for every 1   kg of fi ber  [83] . 

 After fi ber extraction, the cottonseed could be used extensively as a source of 
proteins and calories, but it is hampered by the presence of the toxic  gossypol . 
Gossypol is a cardiotoxic and hepatotoxic terpenoid and is unsafe for human and 
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monogastric animal consumption  [147] . Gossypol and related terpenoids are 
present in the glands of foliage, fl oral organs, and bolls, as well as in the roots 
 [83] . It protects the plant from both insects and pathogens  [148, 149] . 

 Gossypol and other sesquiterpenoids are derived from ( + ) -  δ  - cadinene. An 
RNAi - silencing approach on  δ  - cadinene synthase, coupled with a highly seed -
 specifi c  α  - globulin B gene promoter from cotton, showed signifi cant and selec-
tive reduction of gossypol content from cottonseed, without diminishing its 
content and related defensive terpenoids in non - seed tissues of the plant usually 
attacked by insects  [83] . If the gossypol level in the seeds can be reduced under 
the safety limit set by United Nations, Food and Agricultural Organization, and 
World Health Organization, it might be safe for human consumption  [83] . Their 
limit of free gossypol in edible cottonseed products is less than 0.6   g/mg 
(600   ppm)  [150] .   

   19.7 
Crossing Borders    –    Heterologous Production of Plant Compounds 
in Microorganisms 

   19.7.1 
Artemisinic Acid 

 One of the success stories of using the synthetic biology approach is related to 
 artemisinic acid . It is a naturally occurring precursor of artemisinin, used as an 
antimalarial drug. Malaria causes nearly a million deaths each year, mostly of 
children below 5 years old. The World Health Organization (WHO) estimated 247 
million  malaria  cases among 3.3 billion people who were at risk in 2006  [151] . 
This leads to a demand to supply artimisinin in an economically attractive and 
environmental friendly way. The relatively low yield (0.01 – 0.6%) of artemisinin 
from  Artemisia annua  is unable to supply the world demand  [136] . The total chemi-
cal synthesis of artemisinin is diffi cult and costly  [152] . However, the semi -
 synthesis of artemisinin or any derivatives from microbial sourced artemisinic acid 
and its immediate precursor gives an alternative for availability and economic 
feasibility  [153] . Using the synthetic biology approach with the use of appropriate 
promoters and an expression vector resulted in the production of artemisinic acid 
of up to 300   mg/l in the yeast  Saccharomyces cerevisiae   [68, 154] .  

   19.7.2 
Stilbenes 

  Stilbenes  are polyketides, produced by plants. Resveratrol is a representative 
of stilbenes and is known as a constituent of red wine, which has possible interest-
ing biological activities as an anti - cancer agent  [155] , inhibitor of infl ammation, 
tumor promotion, angiogenesis and metastasis, and regulation of cell cycle pro-
gression  [156] . 
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 The biosynthetic pathway and the enzymes have been characterized and meta-
bolic engineering has been achieved in plants, microbes, and animals  [157] .  E. 

coli  cells carrying PAL (phenylalanine ammonia - lyase),  4CL  ( 4 - coumarate:CoA 
ligase ),  STS  ( stilbene synthase ), and  ACC  ( acetyl CoA carboxylase ) produced 
40   mg/l resveratrol (1   h) from tyrosine. The PAL is from the yeast  Rhodotorula 

rubra , 4CL is from actinomycete  S. coelicolor  A3  [2] , and STS is from  Arachis 

hypogaea   [158, 159] . Resveratrol yields were  > 100   mg/l in  E. coli  expressing 4CL 
and STS  [160] . 

 Stilbenes are rapidly absorbed and metabolized when given orally. The modifi ca-
tion of the resveratrol scaffold by hydroxylation and methylation enhanced its 
bioactivities. The recombinant  E. coli  carrying PAL, 4CL, STS, ACC, and  OsPMT  
( pinosylvin methyltransferase in rice ) with the addition of tyrosine resulted in the 
production of 18   mg/l pinostilbene and 6   mg/l pterostilbene. Addition of phenyla-
lanine resulted in production of pinosylvin monomethyl ether and pinosylvin 
dimethyl ether almost in the same yield of 27   mg/l  [161] .  

   19.7.3 
Curcuminoids 

 Curcumin, bisdemethoxycurcumin, and dicinnamoylmethane are known as  cur-
cuminoids   [162] . Curcumin is the active ingredient of turmeric ( Curcuma longa ), 
which has a surprisingly wide range of benefi cial claims, but not yet clinically 
proven. Its use is related to traditional medicine as an anti - infl ammatory, antioxi-
dant, anti - HIV, chemopreventive, and chemotherapeutic agent. These actions are 
partly supported by preclinical pharmacology  [163, 164] . 

 Horinouchi  [161]  discovered a type III  polyketides synthase  ( PKS ) in  Oryza 

sativa  (rice) that can synthesize curcuminods via  p  - courmaroyl - CoA. This PKS, 
named  CUS  ( curcuminoid synthase ), is part of an artifi cial biosynthetic 
pathway for production of curcuminoids in  E. coli   [165] . The  E. coli  expressing 
PAL, 4CL, CUS, and ACC with the additional supply of 1   mM each of the phe-
nylpropanoid acid ( p  - coumaric acid, cinnamic acid or ferulic acid) yielded about 
100   mg/l of curcumin or dicinnamoylmethane, and bisdemethoxycurcumin, 
respectively  [161] .  E. coli  carrying 4CL, ACC, and CUS with the addition of 
ferulic acid isolated from 1   g of rice bran pitch yielded 60   mg of curcumin. 
Rice bran pitch is a dark and viscous oil, which is a waste from the production 
of rice edible oil from rice bran. Rice bran pitch (1   g) contains about 22   mg of 
ferulic acid  [162] .  

   19.7.4 
Flavonoids 

 For the fi rst time the complete  fl avonoid  pathway from a plant has been success-
fully transferred into a microorganism  [161] . Genes from various organisms were 
assembled in  E. coli  on a single pET plasmid for the production of fl avanones. 
They are PAL from the yeast  Rhodotorula rubra , 4CL or ScCCL from the 
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actinomycete  S. coelicolor A3   [2] , CHS from the plant  Glycyrrhiza echinata , and CHI 
from the plant  Pueraria lobata   [166, 167] . The construction proved to be optimal 
using isopropyl   β  - D - thiogalactopyranoside  ( IPTG ) inducible T7 - promoter and a 
synthetic ribosome - binding sequence in front of each of the four genes in a  recA  -
 host  [167] . The yield of pinocembrin from 3   mM phenylalanine exogenously added, 
and naringenin from 3   mM tyrosine were both 60   mg/l  [158] .  Flavanone - 3 β  -
 hydroxylase  ( F3H ),  fl avonol synthase  ( FLS ) and  fl avone synthase  ( FNS ) were intro-
duced into  E. coli  to modify fl avanones into fl avonols (kaempferol and galangin). 
The expression of the genes led to the production of kaempferol (15.1   mg/l) from 
3   mM tyrosine and galangin (1.1   mg/l) from 3   mM phenylalanine  [168] . Cloning 
of an FNS gene from  Petroselinum crispum  into pACYC in the  E. coli  host led to 
production of fl avones: apigenin (13   mg/l) from tyrosine and chrysin (9.4   mg/l) 
from phenylalanine  [168] .  

   19.7.5 
Vanillin 

 An example of  “  white biotechnology  ”  is the production of  vanillin  as one of the 
most important aromatic fl avor compounds used in foods, beverages, perfumes, 
and pharmaceuticals. The production scale is more than 10   000 tons per year by 
chemical synthesis  [13] . The increasing demand of customers for natural fl avors 
has shifted the interest of the fl avor industry to produce vanillin from natural 
sources by biotransformation instead of organic synthesis  [13] . The aim of the 
biotransformation of vanillin is to avoid toxic and mutagenic solvents such as 
phenol and dimethyl sulfate and to avoid corrosive compounds such as hydrogen 
peroxide, which are used for the organic synthesis  [169] . 

 Many different possibilities have been investigated for the biotechnological pro-
duction of vanillin using different types of bacteria and fungi and different precur-
sors  [13] . The transformed  E. coli  BL21(DE3) cells carrying the isoeugenol 
monooxygenase gene of  Pseudomonas putida  IE27 produced up to 28.3   g/l of vanil-
lin from 230   mM isoeugenol, with a molar conversion yield of 81% at 20    ° C after 
6   h  [170] . The growing knowledge regarding enzymes involved in biosynthetic 
pathways as well as the identifi cation and characterization of the corresponding 
genes offers new opportunities for metabolic engineering and for the construction 
of genetically engineered production strains  [13] .   

   19.8 
Conclusion and Future Prospects 

 Plants defi nitely play an essential role in modern pharmacy and medicine. Efforts 
to obtain the desired natural compounds to be used as drugs in an effi cient way 
are ongoing and include various approaches. 

 Metabolic engineering has been applied to both plants and plant cell cultures. 
Plant cell cultures have been shown to be feasible for industrial production only 
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to a limited extent, as shown for paclitaxel. Understanding secondary metabolism 
within cells and cell cultures is essential to use them as a means to supply natural 
products. The characteristics and metabolic capacities of plant cell/tissue and 
microbial systems are inherently different; therefore they can serve as complemen-
tary unit operations in order to solve the long - standing problem of robust second-
ary metabolites production  [102] . 

 The lack of complete information about the genomes of most medicinal 
plants is still an immense challenge for applying the appropriate metabolic 
engineering strategy. To date, only a few plant genomes (e.g.,  Oryza sativa ,  Zea 

mays , and  Arabidopsis thaliana ), but none of the medicinal plants, have been 
fully sequenced. The challenges of unravelling the unknown biosynthetic path-
ways, the encoding genes, and the transcription factors are still there. However, 
with the progress of sequencing techniques, it will likely be feasible to fully 
sequence medicinal plants in a shorter time. The only main constraint will, 
however, be the funding. 

 Conventional breeding of medicinal plants is another way to enhance the con-
centration of the desired compounds. Breeding and genetic engineering essen-
tially go hand in hand and are necessary to ensure the availability of the desired 
compounds. 

 Until now, it seems that there has been limited success in engineering medici-
nal plants in which the product could be commercialized based on the economic 
feasibility. However, genetic engineering strategies have been applied to crop 
plants such as rice, maize, soybean, and cotton with great and signifi cant success. 
The genetically modifi ed crop plants with  Bt  (  Bacillus thuringiensis  ) toxin for pest 
resistance have been grown commercially in approximately 42 million hectares 
worldwide  [171] . In addition, Bt transgenic rice varieties are in fi eld tests and are 
close to approval for commercialization  [172] . 

 The advance of technology holds great promise for the future of plant metabolic 
engineering. Genomics approaches may lead to the identifi cation of regulatory 
genes and proteomic approaches may explain why the expression level of some 
biosynthetic genes do not correlate with the metabolites profi le  [108] . 

 Finding alternative ways to produce originally plant - derived compounds are still 
continuing. Microorganisms such as endophytes may serve as an alternative host 
for production of bioactive substances as reviewed in reference  [173] . The success 
of transferring the biosynthetic pathway from plants into microorganisms or other 
hosts for the production of artemisinic acid and fl avonoids showed that it is fea-
sible to engineer the entire pathway into microorganisms. 

 The latest promising approach is through synthetic biology for optimizing the 
biotechnological production of the plant - derived compounds. However, well -
 characterized biological components, such as the knowledge of the biosynthetic 
pathways, the genes involved, the promoters, and the precursors, are essential to 
build the system. An integrated approach to synthetic biology and metabolic engi-
neering will be necessary in the near future. For successful engineering to enhance 
and optimize the production of the desired metabolites, crossing borders of dif-
ferent disciplines will be needed.  
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