83 research outputs found

    Combatting wound biofilm and recalcitrance with a novel anti-biofilm Hydrofiber® wound dressing

    Get PDF
    AbstractBackgroundBiofilm is an impediment to wound healing as a consequence of its proven ability to impair epithelialization, granulation tissue formation and normal inflammatory processes, as well as protecting wound pathogens from antibiotics and antiseptics. With this in mind, a project was initiated to develop a combined anti-biofilm/antimicrobial technology that could be incorporated into a wound dressing to maximize effectiveness against wound pathogens existing in their predominant biofilm form.MethodsInitially, a wide range of anti-biofilm agents in combination with ionic silver were screened in a rapid throughput in vitro biofilm model. Selected agents were incorporated into a new wound dressing format and subsequently tested in vitro against antibiotic-resistant pathogens in their most tolerant biofilm form.ResultsThe combination of ionic silver with a metal chelating agent and a surfactant was shown to produce a synergistic effect (referred to as Ag+ Technology) that substantially improved the antimicrobial efficacy of ionic silver against biofilm pathogens in a simulated wound biofilm model.ConclusionBy combining anti-biofilm and antimicrobial components that work in synergy to disrupt biofilm and expose associated wound pathogens to the antimicrobial action of ionic silver, it is anticipated that this new technology incorporated into an advanced Hydrofiber® wound dressing will contribute significantly to managing biofilm infections and encouraging healing in patients debilitated by recalcitrant wounds

    The evolution of methods for establishing evolutionary timescales

    Get PDF
    The fossil record is well known to be incomplete. Read literally, it provides a distorted view of the history of species divergence and extinction, because different species have different propensities to fossilize, the amount of rock fluctuates over geological timescales, as does the nature of the environments that it preserves. Even so, patterns in the fossil evidence allow us to assess the incompleteness of the fossil record. While the molecular clock can be used to extend the time estimates from fossil species to lineages not represented in the fossil record, fossils are the only source of information concerning absolute (geological) times in molecular dating analysis. We review different ways of incorporating fossil evidence in modern clock dating analyses, including node-calibrations where lineage divergence times are constrained using probability densities and tip-calibrations where fossil species at the tips of the tree are assigned dates from dated rock strata. While node-calibrations are often constructed by a crude assessment of the fossil evidence and thus involves arbitrariness, tip-calibrations may be too sensitive to the prior on divergence times or the branching process and influenced unduly affected by well-known problems of morphological character evolution, such as environmental influence on morphological phenotypes, correlation among traits, and convergent evolution in disparate species. We discuss the utility of time information from fossils in phylogeny estimation and the search for ancestors in the fossil record. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’

    Interpretation of Experimental J^PC Exotic Signals

    Get PDF
    We investigate theoretical interpretations of the 1.4 GeV J^PC exotic resonance reported by the E852 collaboration. It is argued that interpretation in terms of a hybrid meson is untenable. A K-matrix analysis shows that the 1.4 GeV enhancement in the E852 eta pi data can be understood as an interference of a non-resonant Deck-type background and a resonance at 1.6 GeV. A final state rescattering calculation shows that the 1.6 GeV hybrid has a eta pi width which is bounded above by 57 \pm 14 MeV.Comment: 23 pages, LaTeX, 4 encapsulated postscript figures. Accepted for publication by Physical Review

    Chaste : Cancer, Heart and Soft Tissue Environment

    Get PDF
    Funding: UK Engineering and Physical Sciences Research Council [grant number EP/N509711/1 (J.K.)].Chaste (Cancer, Heart And Soft Tissue Environment) is an open source simulation package for the numerical solution of mathematical models arising in physiology and biology. To date, Chaste development has been driven primarily by applications that include continuum modelling of cardiac electrophysiology (‘Cardiac Chaste’), discrete cell-based modelling of soft tissues (‘Cell-based Chaste’), and modelling of ventilation in lungs (‘Lung Chaste’). Cardiac Chaste addresses the need for a high-performance, generic, and verified simulation framewor kfor cardiac electrophysiology that is freely available to the scientific community. Cardiac chaste provides a software package capable of realistic heart simulations that is efficient, rigorously tested, and runs on HPC platforms. Cell-based Chaste addresses the need for efficient and verified implementations of cell-based modelling frameworks, providing a set of extensible tools for simulating biological tissues. Computational modelling, along with live imaging techniques, plays an important role in understanding the processes of tissue growth and repair. A wide range of cell-based modelling frameworks have been developed that have each been successfully applied in a range of biological applications. Cell-based Chaste includes implementations of the cellular automaton model, the cellular Potts model, cell-centre models with cell representations as overlapping spheres or Voronoi tessellations, and the vertex model. Lung Chaste addresses the need for a novel, generic and efficient lung modelling software package that is both tested and verified. It aims to couple biophysically-detailed models of airway mechanics with organ-scale ventilation models in a package that is freely available to the scientific community.Publisher PDFPeer reviewe

    Planet Occurrence within 0.25 AU of Solar-type Stars from Kepler

    Get PDF
    We report the distribution of planets as a function of planet radius (R_p), orbital period (P), and stellar effective temperature (Teff) for P < 50 day orbits around GK stars. These results are based on the 1,235 planets (formally "planet candidates") from the Kepler mission that include a nearly complete set of detected planets as small as 2 Earth radii (Re). For each of the 156,000 target stars we assess the detectability of planets as a function of R_p and P. We also correct for the geometric probability of transit, R*/a. We consider first stars within the "solar subset" having Teff = 4100-6100 K, logg = 4.0-4.9, and Kepler magnitude Kp < 15 mag. We include only those stars having noise low enough to permit detection of planets down to 2 Re. We count planets in small domains of R_p and P and divide by the included target stars to calculate planet occurrence in each domain. Occurrence of planets varies by more than three orders of magnitude and increases substantially down to the smallest radius (2 Re) and out to the longest orbital period (50 days, ~0.25 AU) in our study. For P < 50 days, the radius distribution is given by a power law, df/dlogR= k R^\alpha. This rapid increase in planet occurrence with decreasing planet size agrees with core-accretion, but disagrees with population synthesis models. We fit occurrence as a function of P to a power law model with an exponential cutoff below a critical period P_0. For smaller planets, P_0 has larger values, suggesting that the "parking distance" for migrating planets moves outward with decreasing planet size. We also measured planet occurrence over Teff = 3600-7100 K, spanning M0 to F2 dwarfs. The occurrence of 2-4 Re planets in the Kepler field increases with decreasing Teff, making these small planets seven times more abundant around cool stars than the hottest stars in our sample. [abridged]Comment: Submitted to ApJ, 22 pages, 10 figure

    Historical influences on the current provision of multiple ecosystem services: is there a legacy of past landcover?

    Get PDF
    Ecosystem service provision varies temporally in response to natural and human-induced factors, yet research in this field is dominated by analyses that ignore the time-lags and feedbacks that occur within socio-ecological systems. The implications of this have been unstudied, but are central to understanding how service delivery will alter due to future land-use/cover change. Urban areas are expanding faster than any other land-use, making cities ideal study systems for examining such legacy effects. We assess the extent to which present-day provision of a suite of eight ecosystem services, quantified using field-gathered data, is explained by current and historical (stretching back 150 years) landcover. Five services (above-ground carbon density, recreational use, bird species richness, bird density, and a metric of recreation experience quality (continuity with the past) were more strongly determined by past landcover. Time-lags ranged from 20 (bird species richness and density) to over 100 years (above-ground carbon density). Historical landcover, therefore, can have a strong influence on current service provision. By ignoring such time-lags, we risk drawing incorrect conclusions regarding how the distribution and quality of some ecosystem services may alter in response to land-use/cover change. Although such a finding adds to the complexity of predicting future scenarios, ecologists may find that they can link the biodiversity conservation agenda to the preservation of cultural heritage, and that certain courses of action provide win-win outcomes across multiple environmental and cultural goods

    Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD

    Get PDF
    Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD) will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750); COPDGene (N = 590)] was used to identify single nucleotide polymorphisms (SNPs) associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs). PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs). Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis) were explored using conditional independence tests. We identified 527 highly significant (p 10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10−392) explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC). Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER), surfactant protein D (gene = SFTPD), and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis), but distant (trans) pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2) for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In conclusion, given the frequency of highly significant local pQTLs, the large amount of variance potentially explained by pQTL, and the differences observed between pQTLs and eQTLs SNPs, we recommend that protein biomarker-disease association studies take into account the potential effect of common local SNPs and that pQTLs be integrated along with eQTLs to uncover disease mechanisms. Large-scale blood biomarker studies would also benefit from close attention to the ABO blood group
    • …
    corecore