146 research outputs found

    Efficient Processing of Spatio-Temporal Data Streams With Spiking Neural Networks

    Get PDF
    Kugele A, Pfeil T, Pfeiffer M, Chicca E. Efficient Processing of Spatio-Temporal Data Streams With Spiking Neural Networks. Frontiers in Neuroscience. 2020;14: 439.Spiking neural networks (SNNs) are potentially highly efficient models for inference on fully parallel neuromorphic hardware, but existing training methods that convert conventional artificial neural networks (ANNs) into SNNs are unable to exploit these advantages. Although ANN-to-SNN conversion has achieved state-of-the-art accuracy for static image classification tasks, the following subtle but important difference in the way SNNs and ANNs integrate information over time makes the direct application of conversion techniques for sequence processing tasks challenging. Whereas all connections in SNNs have a certain propagation delay larger than zero, ANNs assign different roles to feed-forward connections, which immediately update all neurons within the same time step, and recurrent connections, which have to be rolled out in time and are typically assigned a delay of one time step. Here, we present a novel method to obtain highly accurate SNNs for sequence processing by modifying the ANN training before conversion, such that delays induced by ANN rollouts match the propagation delays in the targeted SNN implementation. Our method builds on the recently introduced framework of streaming rollouts, which aims for fully parallel model execution of ANNs and inherently allows for temporal integration by merging paths of different delays between input and output of the network. The resulting networks achieve state-of-the-art accuracy for multiple event-based benchmark datasets, including N-MNIST, CIFAR10-DVS, N-CARS, and DvsGesture, and through the use of spatio-temporal shortcut connections yield low-latency approximate network responses that improve over time as more of the input sequence is processed. In addition, our converted SNNs are consistently more energy-efficient than their corresponding ANNs

    β-Hydroxy-β-Methylbutyrate Supplementation Promotes Antitumor Immunity in an Obesity Responsive Mouse Model of Pancreatic Ductal Adenocarcinoma

    Get PDF
    Pancreatic cancer (PDAC) is a deadly disease, exacerbated by obesity, which lacks effective therapeutic interventions. Most PDAC has a limited response to immune- and chemotherapy. Treating PDAC is made additionally challenging by the rapid emergence of muscle wasting and cachexia, which predict poor response to several therapies. We have found that dietary supplementation with β-hydroxy-β-methylbutyrate promotes immunosurveillance in PDAC tumors and protects muscle. This dietary supplement has the potential to be an important adjuvant in PDAC therapy, opening the doors to immunotherapy response

    Comparing Neuromorphic Solutions in Action : Implementing a Bio-Inspired Solution to a Benchmark Classification Task on Three Parallel-Computing Platforms

    Get PDF
    Copyright © 2016 Diamond, Nowotny and Schmuker. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Neuromorphic computing employs models of neuronal circuits to solve computing problems. Neuromorphic hardware systems are now becoming more widely available and "neuromorphic algorithms" are being developed. As they are maturing toward deployment in general research environments, it becomes important to assess and compare them in the context of the applications they are meant to solve. This should encompass not just task performance, but also ease of implementation, speed of processing, scalability, and power efficiency. Here, we report our practical experience of implementing a bio-inspired, spiking network for multivariate classification on three different platforms: the hybrid digital/analog Spikey system, the digital spike-based SpiNNaker system, and GeNN, a meta-compiler for parallel GPU hardware. We assess performance using a standard hand-written digit classification task. We found that whilst a different implementation approach was required for each platform, classification performances remained in line. This suggests that all three implementations were able to exercise the model's ability to solve the task rather than exposing inherent platform limits, although differences emerged when capacity was approached. With respect to execution speed and power consumption, we found that for each platform a large fraction of the computing time was spent outside of the neuromorphic device, on the host machine. Time was spent in a range of combinations of preparing the model, encoding suitable input spiking data, shifting data, and decoding spike-encoded results. This is also where a large proportion of the total power was consumed, most markedly for the SpiNNaker and Spikey systems. We conclude that the simulation efficiency advantage of the assessed specialized hardware systems is easily lost in excessive host-device communication, or non-neuronal parts of the computation. These results emphasize the need to optimize the host-device communication architecture for scalability, maximum throughput, and minimum latency. Moreover, our results indicate that special attention should be paid to minimize host-device communication when designing and implementing networks for efficient neuromorphic computing.Peer reviewe

    protection by adrenomedullin

    Get PDF
    Ventilator-induced lung injury (VILI) contributes to morbidity and mortality in acute respiratory distress syndrome (ARDS). Particularly pre-injured lungs are susceptible to VILI despite protective ventilation. In a previous study, the endogenous peptide adrenomedullin (AM) protected murine lungs from VILI. We hypothesized that mechanical ventilation (MV) contributes to lung injury and sepsis in pneumonia, and that AM may reduce lung injury and multiple organ failure in ventilated mice with pneumococcal pneumonia. We analyzed in mice the impact of MV in established pneumonia on lung injury, inflammation, bacterial burden, hemodynamics and extrapulmonary organ injury, and assessed the therapeutic potential of AM by starting treatment at intubation. In pneumococcal pneumonia, MV increased lung permeability, and worsened lung mechanics and oxygenation failure. MV dramatically increased lung and blood cytokines but not lung leukocyte counts in pneumonia. MV induced systemic leukocytopenia and liver, gut and kidney injury in mice with pneumonia. Lung and blood bacterial burden was not affected by MV pneumonia and MV increased lung AM expression, whereas receptor activity modifying protein (RAMP) 1-3 expression was increased in pneumonia and reduced by MV. Infusion of AM protected against MV-induced lung injury (66% reduction of pulmonary permeability p<0.01; prevention of pulmonary restriction) and against VILI- induced liver and gut injury in pneumonia (91% reduction of AST levels p<0.05, 96% reduction of alanine aminotransaminase (ALT) levels p<0.05, abrogation of histopathological changes and parenchymal apoptosis in liver and gut). MV paved the way for the progression of pneumonia towards ARDS and sepsis by aggravating lung injury and systemic hyperinflammation leading to liver, kidney and gut injury. AM may be a promising therapeutic option to protect against development of lung injury, sepsis and extrapulmonary organ injury in mechanically ventilated individuals with severe pneumonia

    Practices and values regarding milk consumption among pre-schoolers in Bangkok

    Get PDF
    Purpose: Thai government agencies and the business sector have been promoting milk consumption. Considering the robust and continual movements by those actors to promote milk consumption among children in Thailand at the national level, this study aims to investigate milk-consumption practices and values towards milk consumption at pre-school, family and individual levels. Methods: This cross-sectional qualitative study employs observation and interview methods, along with the Ecological System Theory as a framework. Data were collected from three kindergartens used by families of varying socio-economic status, and the homes of 18 pre-schoolers, aged 3-5 years old, attending these kindergartens, from October 2013-September 2014. Results: Findings reveal kindergartens implemented daily routines to make children drink milk. Practices at home include (i) overfeeding of milk, (ii) preference for fortified milk and (iii) using sweetness to make children drink milk. These practices were underpinned by values that milk is good for children and good parents feed their children milk. These values, in combination with other macro-level measures such as the government’s milk-promotion campaigns and the milk industry’s marketing, influence the milk-drinking practices of pre-schoolers. Conclusion: The promotion of the benefits of milk prompted children to exceed the recommended milk consumption of 400ml per day. Balanced information on moderation in milk drinking was absent

    Detection of Soluble ED-A +

    Get PDF
    Background and Aims. Fibronectin containing the extra domain A (ED-A+ Fn) was proven to serve as a valuable biomarker for cardiac remodeling. The study was aimed at establishing an ELISA to determine ED-A+ Fn in serum of heart failure patients. Methods. ED-A+ Fn was quantified in serum samples from 114 heart failure patients due to ischemic (ICM, n=44) and dilated (DCM, n=39) cardiomyopathy as well as hypertensive heart disease (HHD, n=31) compared to healthy controls (n=12). Results. In comparison to healthy volunteers, heart failure patients showed significantly increased levels of ED-A+ Fn (p<0.001). In particular in ICM patients there were significant associations between ED-A+ Fn serum levels and clinical parameters, for example, increased levels with rising NYHA class (p=0.013), a negative correlation with left ventricular ejection fraction (p=0.026, r: −0.353), a positive correlation with left atrial diameter (p=0.008, r: 0.431), and a strong positive correlation with systolic pulmonary artery pressure (p=0.002, r: 0.485). In multivariate analysis, ED-A+ Fn was identified as an independent predictor of an ischemic heart failure etiology. Conclusions. The current study could clearly show that ED-A+ Fn is a promising biomarker in cardiovascular diseases, especially in heart failure patients due to an ICM. We presented a valid ELISA method, which could be applied for further studies investigating the value of ED-A+ Fn

    Paleopolyploidy in the Brassicales: Analyses of the Cleome Transcriptome Elucidate the History of Genome Duplications in Arabidopsis and Other Brassicales

    Get PDF
    The analysis of the Arabidopsis genome revealed evidence of three ancient polyploidy events in the evolution of the Brassicaceae, but the exact phylogenetic placement of these events is still not resolved. The most recent event is called the At-α (alpha) or 3R, the intermediate event is referred to as the At-β (beta) or 2R, and the oldest is the At-γ (gamma) or 1R. It has recently been established that At-γ is shared with other Rosids, including papaya (Carica), poplar (Populus), and grape (Vitis), whereas data to date suggest that At-α is Brassicaceae specific. To address more precisely when the At-α and At-β events occurred and which plant lineages share these paleopolyploidizations, we sequenced and analyzed over 4,700 normalized expressed sequence tag sequences from the Cleomaceae, the sister family to the Brassicaceae. Analysis of these Cleome data with homologous sequences from other Rosid genomes (Arabidopsis, Carica, Gossypium, Populus, and Vitis) yielded three major findings: 1) confirmation of a Cleome-specific paleopolyploidization (Cs-α) that is independent of the Brassicaceae At-α paleopolyploidization; 2) Cleome and Arabidopsis share the At-β duplication, which is lacking from papaya within the Brassicales; and 3) rates of molecular evolution are faster for the herbaceous annual taxa Arabidopsis and Cleome than the other predominantly woody perennial Rosid lineages. These findings contribute to our understanding of the dynamics of genome duplication and evolution within one of the most comprehensively surveyed clades of plants, the Rosids, and clarify the complex history of the At-α, At-β, and At-γ duplications of Arabidopsis

    Effects of Short Term Adiponectin Receptor Agonism on Cardiac Function and Energetics in Diabetic db/db Mice.

    Get PDF
    Objective Impaired cardiac efficiency is a hallmark of diabetic cardiomyopathy in models of type 2 diabetes. Adiponectin receptor 1 (AdipoR1) deficiency impairs cardiac efficiency in non-diabetic mice, suggesting that hypoadiponectinemia in type 2 diabetes may contribute to impaired cardiac efficiency due to compromised AdipoR1 signaling. Thus, we investigated whether targeting cardiac adiponectin receptors may improve cardiac function and energetics, and attenuate diabetic cardiomyopathy in type 2 diabetic mice. Methods A non-selective adiponectin receptor agonist, AdipoRon, and vehicle were injected intraperitoneally into Eight-week-old db/db or C57BLKS/J mice for 10 days. Cardiac morphology and function were evaluated by echocardiography and working heart perfusions. Results Based on echocardiography, AdipoRon treatment did not alter ejection fraction, left ventricular diameters or left ventricular wall thickness in db/db mice compared to vehicle-treated mice. In isolated working hearts, an impairment in cardiac output and efficiency in db/db mice was not improved by AdipoRon. Mitochondrial respiratory capacity, respiration in the presence of oligomycin, and 4-hydroxynonenal levels were similar among all groups. However, AdipoRon induced a marked shift in the substrate oxidation pattern in db/db mice towards increased reliance on glucose utilization. In parallel, the diabetes-associated increase in serum triglyceride levels in vehicle-treated db/db mice was blunted by AdipoRon treatment, while an increase in myocardial triglycerides in vehicle-treated db/db mice was not altered by AdipoRon treatment. Conclusion AdipoRon treatment shifts myocardial substrate preference towards increased glucose utilization, likely by decreasing fatty acid delivery to the heart, but was not sufficient to improve cardiac output and efficiency in db/db mice
    corecore