74 research outputs found

    Short-term movements and behaviour govern the use of road mitigation measures by a protected amphibian

    Get PDF
    Road mitigation infrastructure for pond‐breeding amphibians aims to provide a safe and sustainable passage for individuals between critical habitat patches. However, relatively little is known about how amphibians interact with mitigation systems because of the challenges of documenting movements at sufficiently large sample sizes. The effect of real or perceived barriers to short‐term movement could ultimately determine the success or failure of road mitigation schemes. We quantified behavioural responses of the protected great crested newt Triturus cristatus in a complex road mitigation system in the UK. We used fluorescent paint to mark individuals in order to measure distance travelled and trajectory orientation over two seasons (spring when adults migrate to breeding ponds and autumn when newts disperse) and in three components of the mitigation system (fences, tunnel entrances and inside the tunnels). A total of 250 juveniles and 137 adult great crested newts were marked and tracked during 38 survey nights. Adults were individually identified using belly‐pattern recognition. There was substantially greater activity along the fences during autumn (82% of newt captures) compared to spring. Triturus cristatus typically moved short distances each night (3.21 m per night in spring and 6.72 m per night in autumn), with a maximum of 25.6 m travelled inside a tunnel. Adult recapture rates were low (9.7%) and only 3% of the newts found along the fences reached the tunnel entrances. Movements were straighter in spring and inside the tunnels and newts had higher crossing rates in autumn compared to spring. Overall, behaviour and seasonal movement patterns significantly influenced the use of the mitigation system, in a way that could impact landscape connectivity for T. cristatus over the long‐term. Adequate incorporation of fine‐scale movement dynamics could help develop new behavioural models, inform our understanding of amphibian ecology and substantially improve future road mitigation projects

    Emerging fungal pathogen Ophidiomyces ophiodiicola in wild European snakes

    Get PDF
    Snake fungal disease (SFD) is an emerging disease of conservation concern in eastern North America. Ophidiomyces ophiodiicola\textit{Ophidiomyces ophiodiicola}, the causative agent of SFD, has been isolated from over 30 species of wild snakes from six families in North America. Whilst O. ophiodiicola\textit{O. ophiodiicola} has been isolated from captive snakes outside North America, the pathogen has not been reported from wild snakes elsewhere. We screened 33 carcasses and 303 moulted skins from wild snakes collected from 2010–2016 in Great Britain and the Czech Republic for the presence of macroscopic skin lesions and O. ophiodiicola\textit{O. ophiodiicola}. The fungus was detected using real-time PCR in 26 (8.6%) specimens across the period of collection. Follow up culture and histopathologic analyses confirmed that both O. ophiodiicola\textit{O. ophiodiicola} and SFD occur in wild European snakes. Although skin lesions were mild in most cases, in some snakes they were severe and were considered likely to have contributed to mortality. Culture characterisations demonstrated that European isolates grew more slowly than those from the United States, and phylogenetic analyses indicated that isolates from European wild snakes reside in a clade distinct from the North American isolates examined. These genetic and phenotypic differences indicate that the European isolates represent novel strains of O. ophiodiicola\textit{O. ophiodiicola}. Further work is required to understand the individual and population level impact of this pathogen in Europe.This work was undertaken as part of the Garden Wildlife Health project www.gardenwildlifehealth.org. Funding was provided by the UK Department for the Environment Food & Rural Affairs and Welsh Government through the Animal Plant & Health Agency’s Diseases of Wildlife Scheme Scanning Surveillance Programme (Project ED1600), the Esmée Fairbairn Foundation, the Universities Federation for Animal Welfare, and the U.S. Geological Survey

    A solution scan of societal options to reduce transmission and spread of respiratory viruses: SARS-CoV-2 as a case study

    Get PDF
    Societal biosecurity – measures built into everyday society to minimize risks from pests and diseases – is an important aspect of managing epidemics and pandemics. We aimed to identify societal options for reducing the transmission and spread of respiratory viruses. We used SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) as a case study to meet the immediate need to manage the COVID-19 pandemic and eventually transition to more normal societal conditions, and to catalog options for managing similar pandemics in the future. We used a ‘solution scanning’ approach. We read the literature; consulted psychology, public health, medical, and solution scanning experts; crowd-sourced options using social media; and collated comments on a preprint. Here, we present a list of 519 possible measures to reduce SARS-CoV-2 transmission and spread. We provide a long list of options for policymakers and businesses to consider when designing biosecurity plans to combat SARS-CoV-2 and similar pathogens in the future. We also developed an online application to help with this process. We encourage testing of actions, documentation of outcomes, revisions to the current list, and the addition of further options.</p

    Insights from two decades of the Student Conference on Conservation Science

    Get PDF
    Conservation science is a crisis-oriented discipline focused on reducing human impacts on nature. To explore how the field has changed over the past two decades, we analyzed 3245 applications for oral presentations submitted to the Student Conference on Conservation Science (SCCS) in Cambridge, UK. SCCS has been running every year since 2000, aims for global representation by providing bursaries to early-career conservationists from lower-income countries, and has never had a thematic focus, beyond conservation in the broadest sense. We found that the majority of projects submitted to SCCS were based on primary biological data collected from local scale field studies in the tropics, contrary to established literature which highlights gaps in tropical research. Our results showed a small increase over time in submissions framed around how nature benefits people as well as a small increase in submissions integrating social science. Our findings suggest that students and early-career conservationists could provide pathways to increase availability of data from the tropics and address well-known biases in the published literature towards wealthier countries. We hope this research will motivate efforts to support student projects, ensuring data and results are published and data made publicly available.The project was made possible through funding from: JG: EUs Horizon 2020 Marie Skłodowska-Curie program (No 676108) and VILLUM FONDEN (VKR023371), HA-P; National Council for Scientific and Technological Development (CNPq) (203407/2017-2), TA: The Australian Research Council Future Fellowship (FT180100354), The Grantham Foundation for the Protection of the Environment and The Kenneth Miller Trust, APC: the Natural Environment Research Council (NERC DTP [NE/L002507/1]), LC: Cambridge International Scholarship from the Cambridge Trust, FH: the Newton International Fellowship of the Royal Society, DM: the Australian Government, Endeavor Postgraduate Scholarhip, HM: Branco Weiss Fellowship Administered by the ETH Zürich and Drapers' Company Fellowship, Pembroke College BIS: the Natural Environment Research Council (NERC DTP[NE/L002507/1 and NE/S001395/1]) and the Royal Commission for the Exhibition of 1851 Research Fellowship, HW: Cambridge Trust Cambridge-Australia Poynton Scholarship and Cambridge Department of Zoology J. S. Gardiner Scholarship

    Two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388

    Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at sNN\sqrt{s_{_{\rm NN}}} = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in η<0.8|\eta|<0.8 and 0.3<pT<200.3 < p_T < 20 GeV/cc are compared to the expectation in pp collisions at the same sNN\sqrt{s_{\rm NN}}, scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAAR_{\rm AA}. The result indicates only weak medium effects (RAAR_{\rm AA} \approx 0.7) in peripheral collisions. In central collisions, RAAR_{\rm AA} reaches a minimum of about 0.14 at pT=6p_{\rm T}=6-7GeV/cc and increases significantly at larger pTp_{\rm T}. The measured suppression of high-pTp_{\rm T} particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98
    corecore