12 research outputs found

    Design of a Low Cost Short Takeoff-vertical Landing Export Fighter/attack Aircraft

    Get PDF
    The design of a supersonic short takeoff and vertical landing (STOVL) aircraft is presented that is suitable for export. An advanced four poster, low bypass turbofan engine is to be used for propulsion. Preliminary aerodynamic analysis is presented covering a determination of CD versus CL, CD versus Mach number, as well as best cruise Mach number and altitude. Component locations are presented and center of gravity determined. Cost minimization is achieved through the use of developed subsystems and standard fabrication techniques using nonexotic materials. Conclusions regarding the viability of the STOVL design are presented

    Is it appropriate to composite fish samples for mercury trend monitoring and consumption advisories?

    Get PDF
    Monitoring mercury levels in fish can be costly because variation by space, time, and fish type/size needs to be captured. Here, we explored if compositing fish samples to decrease analytical costs would reduce the effectiveness of the monitoring objectives. Six compositing methods were evaluated by applying them to an existing extensive dataset and examining their performance in reproducing the fish consumption advisories and temporal trends. The methods resulted in varying amount (average 34-72%) of reductions in samples, but all (except one) reproduced advisories very well (96-97% of the advisories did not change or were one category more restrictive compared to analysis of individual samples). Similarly, the methods performed reasonably well in recreating temporal trends, especially when longer-term and frequent measurements were considered. The results indicate that compositing samples within 5 cm fish size bins or retaining the largest/smallest individuals and compositing in-between samples in batches of 5 with decreasing fish size would be the best approaches. Based on the literature, the findings from this study are applicable to fillet, muscle plug and whole fish mercury monitoring studies. Overall, compositing fish samples for mercury monitoring could result in a substantial savings (approximately 60% of the analytical cost) and should be considered in fish mercury monitoring, especially in long-term programs or when study cost is a concern

    Terrestrial Analog Field Investigations to Enable Science and Exploration Studies of Impacts and Volcanism on the Moon, NEAs, and Moons of Mars

    Get PDF
    Terrestrial analog studies are a critical component for furthering our understanding of geologic processes on the Moon, near-Earth asteroids (NEAs), and the moons of Mars. Carefully chosen analog sites provide a unique natural laboratory with high relevance to the associated science on these solar system target bodies. Volcanism and impact cratering are fundamental processes on the Moon, NEAs, and Phobos and Deimos. The terrestrial volcanic and impact records remain invaluable for our understanding of these processes throughout our solar system, since these are our primary source of firsthand knowledge on volcanic landform formation and modification as well as the three-dimensional structural and lithological character of impact craters. Regarding impact cratering, terrestrial fieldwork can help us to understand the origin and emplacement of impactites, the history of impact bombardment in the inner Solar System, the formation of complex impact craters, and the effects of shock on planetary materials. Volcanism is another dominant geologic process that has significantly shaped the surface of planetary bodies and many asteroids. Through terrestrial field investigations we can study the processes, geomorphic features and rock types related to fissure eruptions, volcanic constructs, lava tubes, flows and pyroclastic deposits. Also, terrestrial analog studies have the advantage of enabling simultaneous robotic and/or human exploration testing in a low cost, low risk, high fidelity environment to test technologies and concepts of operations for future missions to the target bodies. Of particular interest is the importance and role of robotic precursor missions prior to human operations for which there is little to no actual mission experience to draw upon. Also critical to understanding new worlds is sample return, and analog studies enable us to develop the appropriate procedures for collecting samples in a manner that will best achieve the science objectives

    Characterization of peak shear strength of rough rock joints using limited displacement multi-stage direct shear (LDMDS) tests

    No full text
    Current standard direct shear test methods for rock joints do not account for damage to the specimens' asperity profiles; tests require shearing of a single specimen to large displacements under successive normal stresses (the multistage test), or the use of similar specimens in multiple tests. Due to the inherently unique nature of rock joints and corresponding difficulty in obtaining specimens with identical or even similar geometries, multistage tests are more common. A major issue with the multistage test is that successive shearing of the specimen damages the surface asperities and changes its overall roughness profile, reducing the peak shear stress and consequently resulting in underestimation of the friction angle and overestimation of the joint shear intercept (cohesion). The limited displacement multistage direct shear (LDMDS) test method minimizes these testing imperfections by allowing shearing of a single specimen without extensive asperity damage, accomplished by immediately pausing shear displacement once peak shear stress has been reached, then proceeding to shear the specimen under the following normal stress value, and shearing into the post-peak region only after identifying multiple values of peak shear strength. The authors have validated the LDMDS procedure using cement replicates of rock joints, demonstrating that it yields more accurate strength parameters than the standard multistage direct shear test

    Impacts of water level fluctuations on mercury concentrations in hydropower reservoirs: A microcosm experiment

    No full text
    Hydropower generation, a renewable source of electricity, has been linked to elevated methylmercury (MeHg) concentrations in impoundments and aquatic biota. This study investigates the impact of water level fluctuations (WLF) on MeHg concentrations in water, sediment, and fish. Using a set of controlled microcosm experiments emulating the drawdown/refill dynamics and subsequent sediment exposure to air experienced in reservoirs, we demonstrate that less frequent WLFs, and/or increased exposure of sediment to air, can lead to elevated MeHg concentrations in sediment, and total mercury (THg) and MeHg concentrations in water. In examining the effects of WLF frequency (two-day, weekly, and monthly), the monthly treatment displayed the highest THg and MeHg water levels, while the weekly treatment was characterized by the highest MeHg levels in the sediment. Our work supports emerging evidence that longer duration between WLF creates a larger surface area of sediment exposed to air leading to conditions conducive to higher MeHg concentrations in sediments and water. In contrast, THg, MeHg, and fatty acid trends in fish were largely inconclusive characterized by similar among-treatment effects and minimal temporal variability over the course of our experiment. This result could partly be attributed to overall low mercury levels and simple “worm-forage fish” food web in our experiment. To elucidate the broader impacts of water fluctuations on aquatic chemistry and biota, other factors (e.g., longer WLF cycles, dissolved organic matter, temperature, more complex food webs) which modulate both methylation rates and food web dynamics must be considered

    Structure-Based Design of ASK1 Inhibitors as Potential Agents for Heart Failure

    No full text
    Apoptosis signal-regulating kinase 1 (ASK1/MAP3K) is a mitogen-activated protein kinase family member shown to contribute to acute ischemia/reperfusion injury. Using structure-based drug design, deconstruction, and reoptimization of a known ASK1 inhibitor, a lead compound was identified. This compound displayed robust MAP3K pathway inhibition and reduction of infarct size in an isolated perfused heart model of cardiac injury
    corecore