195 research outputs found

    Expectations for the Deep Impact collision from cometary nuclei modelling

    Full text link
    Using the cometary nucleus model developed by Espinasse et al. (1991), we calculate the thermodynamical evolution of Comet 9P/Tempel 1 over a period of 360 years. Starting from an initially amorphous cometary nucleus which incorporates an icy mixture of H2O and CO, we show that, at the time of Deep Impact collision, the crater is expected to form at depths where ice is in its crystalline form. Hence, the subsurface exposed to space should not be primordial. We also attempt an order-of-magnitude estimate of the heating and material ablation effects on the crater activity caused by the 370 Kg projectile released by the DI spacecraft. We thus show that heating effects play no role in the evolution of crater activity. We calculate that the CO production rate from the impacted region should be about 300-400 times higher from the crater resulting from the impact with a 35 m ablation than over the unperturbed nucleus in the immediate post-impact period. We also show that the H2O production rate is decreased by several orders of magnitude at the crater base just after ablation

    Col-OSSOS: The Colours of the Outer Solar System Origins Survey

    Get PDF
    The Colours of the Outer Solar System Origins Survey (Col-OSSOS) is acquiring near-simultaneous gg, rr, and JJ photometry of unprecedented precision with the Gemini North Telescope, targeting nearly a hundred trans-Neptunian objects (TNOs) brighter than mr=23.6m_r=23.6 mag discovered in the Outer Solar System Origins Survey. Combining the optical and near-infrared photometry with the well-characterized detection efficiency of the Col-OSSOS target sample will provide the first flux-limited compositional dynamical map of the outer Solar System. In this paper, we describe our observing strategy and detail the data reduction processes we employ, including techniques to mitigate the impact of rotational variability. We present optical and near-infrared colors for 35 TNOs. We find two taxonomic groups for the dynamically excited TNOs, the neutral and red classes, which divide at g−r≃0.75g-r \simeq 0.75. Based on simple albedo and orbital distribution assumptions, we find that the neutral class outnumbers the red class, with a ratio of 4:1 and potentially as high as 11:1. Including in our analysis constraints from the cold classical objects, which are known to exhibit unique albedos and r−zr-z colors, we find that within our measurement uncertainty, our observations are consistent with the primordial Solar System protoplanetesimal disk being neutral-class-dominated, with two major compositional divisions in grJgrJ color space.Comment: Accepted to ApJS; on-line supplemental files will be available with the AJS published version of the pape

    Identification of limb-specific Lmx1b auto-regulatory modules with Nail-patella syndrome pathogenicity

    Get PDF
    © The Author(s) 2021.LMX1B haploinsufficiency causes Nail-patella syndrome (NPS; MIM 161200), characterized by nail dysplasia, absent/hypoplastic patellae, chronic kidney disease, and glaucoma. Accordingly in mice, Lmx1b has been shown to play crucial roles in the development of the limb, kidney and eye. Although one functional allele of Lmx1b appears adequate for development, Lmx1b null mice display ventral-ventral distal limbs with abnormal kidney, eye and cerebellar development, more disruptive, but fully concordant with NPS. In Lmx1b functional knockouts (KOs), Lmx1b transcription in the limb is decreased nearly 6-fold, indicating autoregulation. Herein, we report on two conserved Lmx1b-associated cis-regulatory modules (LARM1 and LARM2) that are bound by Lmx1b, amplify Lmx1b expression with unique spatial modularity in the limb, and are necessary for Lmx1b-mediated limb dorsalization. These enhancers, being conserved across vertebrates (including coelacanth, but not other fish species), and required for normal locomotion, provide a unique opportunity to study the role of dorsalization in the fin to limb transition. We also report on two NPS patient families with normal LMX1B coding sequence, but with loss-of-function variations in the LARM1/2 region, stressing the role of regulatory modules in disease pathogenesis.This work was supported in part by grants from the Spanish Ministerio de Ciencia, Innovación y Universidades (M.A.R) (BFU2017-88265-P); the National Organization for Rare Disorders (K.C.O.), and the Loma Linda University Pathology Research Endowment Fund (K.C.O.)

    Col-OSSOS: Z-Band Photometry Reveals Three Distinct TNO Surface Types

    Get PDF
    Several different classes of trans-Neptunian objects (TNOs) have been identified based on their optical and near-infrared colors. As part of the Colours of the Outer Solar System Origins Survey, we have obtained gg, rr, and zz band photometry of 26 TNOs using Subaru and Gemini Observatories. Previous color surveys have not utilized zz band reflectance, and the inclusion of this band reveals significant surface reflectance variations between sub-populations. The colors of TNOs in g−rg-r and r−zr-z show obvious structure, and appear consistent with the previously measured bi-modality in g−rg-r. The distribution of colors of the two dynamically excited surface types can be modeled using the two-component mixing models from Fraser \& Brown (2012). With the combination of g−rg-r and r−zr-z, the dynamically excited classes can be separated cleanly into red and neutral surface classes. In g−rg - r and r−zr - z, the two dynamically excited surface groups are also clearly distinct from the cold classical TNO surfaces, which are red, with g−r≳g-r\gtrsim0.85 and r−z≲r-z\lesssim0.6, while all dynamically excited objects with similar g−rg-r colors exhibit redder r−zr-z colors. The zz band photometry makes it possible for the first time to differentiate the red excited TNO surfaces from the red cold classical TNO surfaces. The discovery of different r−zr-z colors for these cold classical TNOs makes it possible to search for cold classical surfaces in other regions of the Kuiper belt and to completely separate cold classical TNOs from the dynamically excited population, which overlaps in orbital parameter space.Comment: 11 pages, 2 figures, Accepted to A

    Association between Ambient Noise Exposure and School Performance of Children Living in An Urban Area: A Cross-Sectional Population-Based Study

    No full text
    16 pages Article disponible à l'adresse suivante : http://link.springer.com/article/10.1007%2Fs11524-013-9843-6International audienceMost of the studies investigating the effects of the external noise on children's school performance have concerned pupils in schools exposed to high levels due to aircraft or freeway traffic noise. However, little is known about the consequences of the chronic ambient noise exposure at a level commonly encountered in residential urban areas. This study aimed to assess the relationship between the school performance of 8- to 9-year-old-children living in an urban environment and their chronic ambient noise exposure at home and at school. The children's school performances on the national standardized assessment test in French and mathematics were compared with the environmental noise levels. Children's exposure to ambient noise was calculated in front of their bedrooms (Lden) and schools (LAeq,day) using noise prediction modeling. Questionnaires were distributed to the families to collect potential confounding factors. Among the 746 respondent children, 586 were included in multilevel analyses. On average, the LAeq,day at school was 51.5 dB (SD= 4.5 dB; range = 38-58 dB) and the outdoor Lden at home was 56.4 dB (SD= 4.4 dB; range = 44-69 dB). LAeq,day at school was associated with impaired mathematics score (p = 0.02) or impaired French score (p = 0.01). For a + 10 dB gap, the French and mathematics scores were on average lower by about 5.5 points. Lden at home was significantly associated with impaired French performance when considered alone (p < 10(-3)) and was borderline significant when the combined home-school exposure was considered (p = 0.06). The magnitude of the observed effect on school performance may appear modest, but should be considered in light of the number of people who are potentially chronically exposed to similar environmental noise levels

    OSSOS. IV. DISCOVERY OF A DWARF PLANET CANDIDATE IN THE 9 : 2 RESONANCE WITH NEPTUNE

    Get PDF
    We report the discovery and orbit of a new dwarf planet candidate, 2015 RR245, by the Outer Solar System Origins Survey (OSSOS). The orbit of 2015 RR245 is eccentric (e = 0.586), with a semimajor axis near 82 au, yielding a perihelion distance of 34 au. 2015 RR245 has g - r = 0.59 +/- 0.11 and absolute magnitude H-r = 3.6 +/- 0.1; for an assumed albedo of p(V) = 12%, the object has a diameter of similar to 670. km. Based on astrometric measurements from OSSOS and Pan-STARRS1, we find that 2015 RR245 is securely trapped on ten-megayear timescales in the 9: 2 mean-motion resonance with Neptune. It is the first trans-Neptunian object (TNO) identified in this resonance. On hundred-megayear. timescales, particles in 2015 RR245-like orbits depart and sometimes return to the resonance, indicating that 2015 RR245 likely forms part of the long-lived metastable population of distant TNOs that drift between resonance sticking and actively scattering via gravitational encounters with Neptune. The discovery of a 9: 2 TNO stresses the role of resonances in the long-term evolution of objects in the scattering disk. and reinforces the view that distant resonances are heavily populated in the current solar system. This object further motivates detailed modeling of the transient sticking population.Peer reviewe

    OSSOS. VII. 800+Trans-Neptunian Objects-The Complete Data Release

    Get PDF
    The Outer Solar System Origins Survey (OSSOS), a wide-field imaging program in 2013-2017 with the Canada-France-Hawaii Telescope, surveyed 155 deg(2) of sky to depths of m(r) = 24.1-25.2. We present 838 outer solar system discoveries that are entirely free of ephemeris bias. This increases the inventory of trans-Neptunian objects (TNOs) with accurately known orbits by nearly 50%. Each minor planet has 20-60 Gaia/Pan-STARRS-calibrated astrometric measurements made over 2-5 oppositions, which allows accurate classification of their orbits within the trans-Neptunian dynamical populations. The populations orbiting in mean-motion resonance with Neptune are key to understanding Neptune's early migration. Our 313 resonant TNOs, including 132 plutinos, triple the available characterized sample and include new occupancy of distant resonances out to semimajor axis a similar to 130 au. OSSOS doubles the known population of the nonresonant Kuiper Belt, providing 436 TNOs in this region, all with exceptionally high-quality orbits of a uncertainty sigma(a)Peer reviewe

    Organised Genome Dynamics in the Escherichia coli Species Results in Highly Diverse Adaptive Paths

    Get PDF
    The Escherichia coli species represents one of the best-studied model organisms, but also encompasses a variety of commensal and pathogenic strains that diversify by high rates of genetic change. We uniformly (re-) annotated the genomes of 20 commensal and pathogenic E. coli strains and one strain of E. fergusonii (the closest E. coli related species), including seven that we sequenced to completion. Within the ∼18,000 families of orthologous genes, we found ∼2,000 common to all strains. Although recombination rates are much higher than mutation rates, we show, both theoretically and using phylogenetic inference, that this does not obscure the phylogenetic signal, which places the B2 phylogenetic group and one group D strain at the basal position. Based on this phylogeny, we inferred past evolutionary events of gain and loss of genes, identifying functional classes under opposite selection pressures. We found an important adaptive role for metabolism diversification within group B2 and Shigella strains, but identified few or no extraintestinal virulence-specific genes, which could render difficult the development of a vaccine against extraintestinal infections. Genome flux in E. coli is confined to a small number of conserved positions in the chromosome, which most often are not associated with integrases or tRNA genes. Core genes flanking some of these regions show higher rates of recombination, suggesting that a gene, once acquired by a strain, spreads within the species by homologous recombination at the flanking genes. Finally, the genome's long-scale structure of recombination indicates lower recombination rates, but not higher mutation rates, at the terminus of replication. The ensuing effect of background selection and biased gene conversion may thus explain why this region is A+T-rich and shows high sequence divergence but low sequence polymorphism. Overall, despite a very high gene flow, genes co-exist in an organised genome
    • …
    corecore