390 research outputs found

    Animals and Friendship: A Reply to Rowlands

    Get PDF
    Can humans be friends with animals? If so, what would the moral implications of such friendship be? In a previous issue of this journal, we argued that humans can indeed be friends with animals and that such friendships are morally valuable. The present article is a comment on Mark Rowlands's reply to our original article. We argue that our original argument is not undermined by Rowlands's attack

    Animal ethics based on friendship

    Get PDF
    This article discusses some aspects of animal ethics from an Aristotelian virtue ethics point of view. Because the notion of friendship (philia) is central to Aristotle's ethical theory, the focus of the article is whether humans and animals can be friends. It is argued that new empirical findings in cognitive ethology indicate that animals actually do fulfill the Aristotelian condition for friendship based on mutual advantage. The practical ethical implications of these findings are discussed, and it is argued that eating meat from free-living animals is more morally acceptable than eating cattle because hunters (unlike farmers) do not befriend their prey

    Is there an ethics of algorithms?

    Get PDF
    We argue that some algorithms are value-laden, and that two or more persons who accept different value-judgments may have a rational reason to design such algorithms differently. We exemplify our claim by discussing a set of algorithms used in medical image analysis: In these algorithms it is often necessary to set certain thresholds for whether e.g. a cell should count as diseased or not, and the chosen threshold will partly depend on the software designer’s preference between avoiding false positives and false negatives. This preference ultimately depends on a number of value-judgments. In the last section of the paper we discuss some general principles for dealing with ethical issues in algorithm-design

    Are species occurrence data in global online repositories fit for modeling species distributions? The case of the Global Biodiversity Information Facility (GBIF). Final Report of the Task Group on GBIF Data Fitness for Use in Distribution Modelling.

    Get PDF
    Primary Biodiversity Data (PBD) are defined as the basic attributes of observations or records of the occurrences of species. PBD is a fundamental concept of biodiversity informatics since it is substantial in quantity and provides the links to organize other large and independent bodies of data concerning species (= taxonomic information) and environments. In fact, PBD is at the core of the exploding field of biodiversity informatics, which in some sense now underlies biogeography, macroecology, landscape ecology and several other subdisciplines of biology. A principal - and rapidly growing - class of research that can be performed using PBD is the estimation of a species' environmental requirements and the projection of these in both environmental and geographic spaces to estimate niches or distributional ranges, generally by using models of ecological niches and species' distributions (often called ENMs or SDMs, respectively). The largest point of access to PBD in the world is the Global Biodiversity Information Facility (GBIF), and hundreds of papers have now used GBIF-mediated data to fit and apply ENM/SDM. Experience has shown that GBIF, like other aggregated data research infrastructures, holds a number of potential problems related to incomplete or difficult access to all the fields in its schema, inconsistent information among fields, or simply erroneous or incomplete data. These drawbacks complicate ENM/SDM analyses considerably, and detract from the enormous scientific value of this information storehouse. Three overlapping communities participate in GBIF's data process: providers (museums, herbaria, and observer's networks), users (scientists, analysts working for governments, NGOs or the private sector, the public) and the technical staff managing the huge databases, web services and servers at GBIF. Each can play a different role in fixing data issues of GBIF. Our main recommendations for the GBIF Secretariat are the following: GBIF.org should serve indicators of precision, quality, and uncertainty of data that can be calculated practically, and preferably "on the fly", as well as summaries and metrics of completeness of inventories, at scales and for regions defined by the user. The summaries should display maps and graphs of completeness by region, time-period and taxa. The implementation of the GBIF information resource should go beyond unique identifiers of queries (DOIs for downloads, including the capability to re-run queries, http://www.gbif.org/publishing-data/summary#supporteddatasettypes), and to include identifiers of the individual data that make up the queried data. GBIF.org should include applications or functionalities enabling users to annotate errors or problems, and communicate those changes directly to providers, as it may be practical and appropriate. This point may need to be discussed with providers. A procedure enabling users to make accessible versions of their databases that have been improved and annotated should be supported, but this functionality should not lose the vital tie back to the original data records and the actual data provider. GBIF should partner with and/or support initiatives to do more for training and guiding users on the proper use of the data; such initiatives should incorporate actual expert uses in ENM/SDM to assure that current best practices are followed

    Angular 21 cm Power Spectrum of a Scaling Distribution of Cosmic String Wakes

    Full text link
    Cosmic string wakes lead to a large signal in 21 cm redshift maps at redshifts larger than that corresponding to reionization. Here, we compute the angular power spectrum of 21 cm radiation as predicted by a scaling distribution of cosmic strings whose wakes have undergone shock heating.Comment: 13 pages, 6 figures; v2: minor modifications, journal versio

    Nutrient cycling in bedform induced hyporheic zones

    Get PDF
    The hyporheic zone is an ecotone connecting the stream and groundwater ecosystem that plays a significant role for stream biogeochemistry. Water exchange across the stream-sediment interface and biogeochemical reactions in the streambed concur to affect subsurface solute concentrations and eventually nutrient cycling in the fluvial corridor. In this paper we investigate the interplay of hydrological and biogeochemical processes in a duned streambed and their effect on spatial distribution of solutes. We employ a numerical model to simulate the turbulent water flow and the pressure distribution over the dunes, and then to evaluate the flow field and the biogeochemical reactions in the hyporheic sediments. Sensitivity analyses are performed to analyze the influence of hydrological and chemical properties of the system on solute reaction rates. The results demonstrate the effect of stream velocity and sediment permeability on the chemical zonation. Changing sediment permeability as well as stream velocity directly affects the nutrient supply and the residence times in the streambed, thus controlling the reaction rates under the dune. Stream-water quality is also shown to influence the reactive behavior of the sediments. In particular, the availability of dissolved organic carbon determines whether the streambed acts as a net sink or source of nitrate. This study represents a step towards a better understanding of the complex interactions between hydrodynamical and biogeochemical processes in the hyporheic zon

    The chemical enrichment of the ICM from hydrodynamical simulations

    Get PDF
    The study of the metal enrichment of the intra-cluster and inter-galactic media (ICM and IGM) represents a direct means to reconstruct the past history of star formation, the role of feedback processes and the gas-dynamical processes which determine the evolution of the cosmic baryons. In this paper we review the approaches that have been followed so far to model the enrichment of the ICM in a cosmological context. While our presentation will be focused on the role played by hydrodynamical simulations, we will also discuss other approaches based on semi-analytical models of galaxy formation, also critically discussing pros and cons of the different methods. We will first review the concept of the model of chemical evolution to be implemented in any chemo-dynamical description. We will emphasise how the predictions of this model critically depend on the choice of the stellar initial mass function, on the stellar life-times and on the stellar yields. We will then overview the comparisons presented so far between X-ray observations of the ICM enrichment and model predictions. We will show how the most recent chemo-dynamical models are able to capture the basic features of the observed metal content of the ICM and its evolution. We will conclude by highlighting the open questions in this study and the direction of improvements for cosmological chemo-dynamical models of the next generation.Comment: 25 pages, 11 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 18; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Lifetime Differences, direct CP Violation and Partial Widths in D0 Meson Decays to K+K- and pi+pi-

    Full text link
    We describe several measurements using the decays D0->K+K- and pi+pi-. We find the ratio of partial widths, Gamma(D0->K+K-)/Gamma(D0->pi+pi-), to be 2.96+/-0.16+/-0.15, where the first error is statistical and the second is systematic. We observe no evidence for direct CP violation, obtaining A_CP(KK) = (0.0+/-2.2+/-0.8)% and A_CP(pipi = (1.9+/-3.2+/-0.8)%. In the limit of no CP violation we measure the mixing parameter y_CP = -0.012+/-0.025+/-0.014 by measuring the lifetime difference between D0->K+ K- or pi+pi- and the CP neutral state, D0->K-pi+. We see no evidence for mixing.Comment: 14 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PRD, Rapid Communicatio

    Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays

    Full text link
    Average charged multiplicities have been measured separately in bb, cc and light quark (u,d,su,d,s) events from Z0Z^0 decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of bb and light quark events, and reconstructed charmed mesons were used to select cc quark events. We measured the charged multiplicities: nˉuds=20.21±0.10(stat.)±0.22(syst.)\bar{n}_{uds} = 20.21 \pm 0.10 (\rm{stat.})\pm 0.22(\rm{syst.}), nˉc=21.28±0.46(stat.)−0.36+0.41(syst.)\bar{n}_{c} = 21.28 \pm 0.46(\rm{stat.}) ^{+0.41}_{-0.36}(\rm{syst.}) nˉb=23.14±0.10(stat.)−0.37+0.38(syst.)\bar{n}_{b} = 23.14 \pm 0.10(\rm{stat.}) ^{+0.38}_{-0.37}(\rm{syst.}), from which we derived the differences between the total average charged multiplicities of cc or bb quark events and light quark events: Δnˉc=1.07±0.47(stat.)−0.30+0.36(syst.)\Delta \bar{n}_c = 1.07 \pm 0.47(\rm{stat.})^{+0.36}_{-0.30}(\rm{syst.}) and Δnˉb=2.93±0.14(stat.)−0.29+0.30(syst.)\Delta \bar{n}_b = 2.93 \pm 0.14(\rm{stat.})^{+0.30}_{-0.29}(\rm{syst.}). We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair
    • 

    corecore