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Executive Summary 

Primary Biodiversity Data (PBD) are defined as the basic attributes of observations or 
records of the occurrences of species. PBD is a fundamental concept of biodiversity 
informatics since it is substantial in quantity and provides the links to organize other large 
and independent bodies of data concerning species (= taxonomic information) and 
environments. In fact, PBD is at the core of the exploding field of biodiversity informatics, 
which in some sense now underlies biogeography, macroecology, landscape ecology and 
several other subdisciplines of biology. 

A principal – and rapidly growing – class of research that can be performed using PBD is the 
estimation of a species’ environmental requirements and the projection of these in both 
environmental and geographic spaces to estimate niches or distributional ranges, generally 
by using models of ecological niches and species’ distributions (often called ENMs or SDMs, 
respectively). 

The largest point of access to PBD in the world is the Global Biodiversity Information Facility 
(GBIF), and hundreds of papers have now used GBIF-mediated data to fit and apply 
ENM/SDM. 

Experience has shown that GBIF, like other aggregated data research infrastructures, holds 
a number of potential problems related to incomplete or difficult access to all the fields in its 
schema, inconsistent information among fields, or simply erroneous or incomplete data. 
These drawbacks complicate ENM/SDM analyses considerably, and detract from the 
enormous scientific value of this information storehouse. 

Three overlapping communities participate in GBIF’s data process: providers (museums, 
herbaria, and observer’s networks), users (scientists, analysts working for governments, 
NGOs or the private sector, the public) and the technical staff managing the huge 
databases, web services and servers at GBIF. Each can play a different role in fixing data 
issues of GBIF. 

Our main recommendations for the GBIF Secretariat are the following: 

 GBIF.org should serve indicators of precision, quality, and uncertainty of data that 
can be calculated practically, and preferably “on the fly”, as well as summaries 
and metrics of completeness of inventories, at scales and for regions defined by 
the user. The summaries should display maps and graphs of completeness by 
region, time-period and taxa. 

 The implementation of the GBIF information resource should go beyond unique 
identifiers of queries (DOIs for downloads, including the capability to re-run 
queries, http://www.gbif.org/publishing-data/summary#supporteddatasettypes), 
and to include identifiers of the individual data that make up the queried data. 

 GBIF.org should include applications or functionalities enabling users to annotate 
errors or problems, and communicate those changes directly to providers, as it 
may be practical and appropriate. This point may need to be discussed with 
providers. 

 A procedure enabling users to make accessible versions of their databases that 
have been improved and annotated should be supported, but this functionality 
should not lose the vital tie back to the original data records and the actual data 
provider. 

 GBIF should partner with and/or support initiatives to do more for training and 
guiding users on the proper use of the data; such initiatives should incorporate 
actual expert uses in ENM/SDM to assure that current best practices are 
followed. 
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1 Introduction 

1.1 Primary data on biodiversity  
Information about different aspects of biodiversity has been accumulating for centuries, but 
most of it is preserved in heterogeneous formats, unreadable by machines, and largely 
unconnected and disorganized in textual form, images, or stand-alone databases (Scholes 
et al. 2008). The amount of biodiversity information accumulated in these heterogeneous 
formats is truly staggering, although it remains highly biased geographically and 
taxonomically.  

Linking and making these knowledge domains interoperable is a major challenge and 
frontier for biodiversity informatics (Peterson et al. 2010). Links between domains that have 
proven to be both practical and powerful function via common fields, such as scientific name 
and geographic location, which can unite data records that have certain elements in 
common (e.g., place, species). Primary biodiversity data (PBD) consist of the basic attributes 
of individual specimens or observations, such as locality, date, scientific name, phenotypic 
measurements, images, voice recordings, etc. Links between domains, ideally, will be 
established via properties of individual organisms (i.e., sequence data of a specimen, body 
size, secondary chemistry), rather than linking via attributes associated with taxonomic 
names or polygons in maps, in other words, via secondary information. However, in practice, 
it is likely that such connections will not only take place through primary data, but using 
combinations (for instance, distribution of body mass on the basis of reported mean weight 
of taxa, rather than on weights of individual specimens). 

Many applications can be built on the basis of such simple links, as the large number of 
papers on species distribution modeling (= linking data records by name to enumerate a 
large number of places, by which one links to environmental data) exemplifies (Guisan et al. 
2013). However, to achieve the volume and reach necessary for a PBD database to become 
useful at geographic scales, data from various sources should be aggregated and made 
broadly available. Several databases have been providing this service since at least the last 
20 years, including not only many in institutions of the developed world, but also several in 
the developing countries, such as Costa Rica’s INBio1, Colombia’s Instituto von Humboldt2, 
South Africa’s SANBI3, and Mexico’s CONABIO4. More recently, still more comprehensive 
initiatives have begun, including the United States’ iDigBio5 and Australia’s Atlas of Living 
Australia6. 

Among such initiatives, the Global Biodiversity Information Facility (GBIF)7 is by far the 
largest point-of-access, indexing datasets provided by other publishers and/or initiatives, 
such as the Ocean Biogeographic Information System (OBIS)8 and the Global Invasive 
Species Database (GISD)9. Compiling, maintaining and operating large PBD databases 
entails overcoming major technical and organizational obstacles, including challenges for 
both data providers and data users, particularly if the data have heterogeneous origins 
(Soberón et al. 2002a; Chapman 2005). When a heterogeneous-provenance database 
grows to the size of GBIF (more than 2.5 M names, including 1.6 M confirmed species in the 
Catalogue of Life10, and more than 650 M occurrence records), issues related to the 

                                                
1 http://www.inbio.ac.cr/en/  
2 http://www.humboldt.org.co/en  
3 http://www.sanbi.org/  
4 http://www.biodiversidad.gob.mx/  
5 https://www.idigbio.org/  
6 http://www.ala.org.au/  
7 http://www.gbif.org  
8 http://www.iobis.org  
9 http://www.issg.org/  
10 http://www.gbif.org/dataset/7ddf754f-d193-4cc9-b351-99906754a03b  

http://www.inbio.ac.cr/en/
http://www.humboldt.org.co/en
http://www.sanbi.org/
http://www.biodiversidad.gob.mx/
https://www.idigbio.org/
http://www.ala.org.au/
http://www.gbif.org/
http://www.iobis.org/
http://www.issg.org/
http://www.gbif.org/dataset/7ddf754f-d193-4cc9-b351-99906754a03b
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consistency, quality, and reliability of the data can become even more important. As a 
consequence, to assure full and appropriate uses, such a database should include: 

 

 Fields describing error and uncertainty associated specifically with taxonomy, 
georeference, and collection date (and others); 

 Ways and tools for users to display, visualize, and explore data, and highlight 
possible inconsistencies or errors (Soberón et al. 1996; Soberón et al. 2002b; 
Chapman 2005); 

 Ways of providing feedback about inconsistencies and errors from users to the 
data aggregator, and from the aggregator to the original data providers; 

 Stable unique identifiers for queries have been available in GBIF since Sept 
2014. However, DOIs for the individual objects in the databases are crucial to full, 
individual-record-level linkage of data domains; lacking such individual identifiers, 
fields linking data records to non-PBD repositories can be included, like those 
related to environmental or species features (ethnobotany, DNA sequences, 
morphology, physiology – Peterson et al. 2010). It is clear to our panel that such 
DOIs are technically challenging and we encourage GBIF to keep working on 
them. 

 

The actual activities related to the topics above are shared among three major (and often 
overlapping) classes of participants: (1) data providers, including natural history museums, 
herbaria, scientific projects, networks of amateurs, repositories of governmental reports, and 
others. (2) Data aggregator agencies or organizations, national or international, scientific or 
non-scientific, compile and serve data from different data providers. Finally, (3) data users, 
are mostly scientists and analysts working in academia, governmental agencies, NGOs, or 
consulting companies, but increasingly also the general public. These classes overlap, but 
the broad classification is useful to propose some solutions to the problems we identify. 

Different types of errors/inconsistencies affect users in different ways, depending on the 
specific research question that a user intends to develop. For example, characterizing the 
flora or fauna of a site and developing a taxonomic revision will require high-quality 
information from different fields in the database. In this report we concentrate on questions 
related to the challenge of estimating associations between environmental datasets and the 
species-occurrences datasets; this is the modeling of ecological niches (ENM) which very 
often is used to estimate the distributions of species, called Species Distribution Modelling 
(SDM). Since here we do not make a distinction between ENM and SDM, we use the latter 
acronym throughout.  

1.2 An overview of Primary Data Portals 
Until the late 1980s, most data-sharing in biology was dependent on printed, hard-copy 
formats. For PBD, access to data was through consultation of published monographs, visits 
to museums or herbaria, or consultations with individual curators using conventional postal 
services. As a consequence there was great variability in speed and comprehensiveness of 
responses. In recent decades, PBD data-sharing has shifted to institution-wide, open-
access-oriented policies using the Internet (Soberón & Peterson 2004), such that enormous 
volumes of PBD are now freely available to users. These initiatives come from individual 
institutions and other data holders that may or may not join worldwide consortia, and vary in 
scope among regions and taxonomic groups (Table 1). 
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Table 1. Some example global database initiatives for biodiversity-related information domains. 

Worldwide/Global Biodiversity Data Initiatives 

Genbank +188 million sequences http://www.ncbi.nlm.nih.gov/genbank/ 

Global Genome 
Biodiversity Network 

+100 thousand sequences from 
+23 thousand taxa 

http://data.ggbn.org/ 

Catalogue of Life +1.6 million species http://www.catalogueoflife.org/ 

Bold Systems +4 million barcode sequences http://www.boldsystems.org/ 

Global Biodiversity 
Information Facility 

+1.6 million species, ca. 650 
million occurrences 

http://www.gbif.org/ 

Freshwater Biodiversity 
Data Portal 

+91 thousand species, +160 
million occurrences 

http://data.freshwaterbiodiversity.eu/ 

Ocean Biogeographic 
Information System 

+148 thousand species, 

+34 million records 

http://iobis.org/ 

Fossilworks +330 thousand taxa, 

+1.2 million occurrences 

http://fossilworks.org/ 

1.3 GBIF.org 
GBIF is currently the largest-scale biodiversity data infrastructure in the world and is funded 
by governments. GBIF.org has provided free and open access to PBD since 2005, when it 
started with just over 40M records. Today, it provides access to almost 650M of records for 
>1.6M species; the data served via GBIF are aggregated from >15,000 datasets from >750 
data holders (Fig. 1). 

 

Figure 1. Accumulation of PBD records accessible via GBIF through time (2008-2015). 
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GBIF-mediated data provides information about biodiversity for almost all countries in the 
world, albeit with drastically different volumes (Soberón 2014). Amounts of data available via 
GBIF separated by world region are illustrated in Figure 2. 

 

 

Figure 2. Decimal logarithm of total number of PBD records accessible via GBIF for various regions of the world (Soberón, 2014). The 
boxes represent the 25% and 75% quartiles, the bars the medians, and the whiskers represent the maximum to minimum interval without 

outliers (1.5 times the upper or lower quartiles) 

 

Access to such massive amounts of PBD has catalyzed research in large-scale biodiversity 
science in many ways (Graham et al. 2004), with > 1750 peer-reviewed publications 
(Mendeley GBIF Public Library)11 in which GBIF-mediated data have been applied to 
questions in a variety of fields, including macroecology (Beck et al. 2012), biodiversity 
responses to environmental change (Warren et al. 2013), public health (Peterson 2015), 
conservation (Guisan et al. 2013), agriculture (Lyal et al. 2008), ecosystem services (Allan et 
al. 2013), evolution (Antonelli et al. 2010), and invasive-species biology (Adhikari et al. 
2015). The growth of usage and science dependence on GBIF as an information 
infrastructure (Figure 3) has been impressive. 

                                                
11 http://www.gbif.org/mendeley  

http://www.gbif.org/mendeley
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Figure 3. Per year number of publications based on data mediated by GBIF and discussing GBIF, since 2005. The accumulated growth is 

exponential. 

1.4 Species Distribution Modelling 
A large and diverse scientific literature has grown to study distributions of species on the 
basis of associations between geographic occurrences of species and the environmental 
characteristics of such occurrences, a field generally known as SDM (Franklin 2010; 
Peterson et al. 2011). SDM applications require  

 PBD: data on sites where a species has been recorded (and ideally, places 
where sampling occurred but the species was not recorded), and  

 Environmental data that characterize the landscape across which the species is 
distributed.  

 

A variety of modelling algorithms can be used to integrate occurrence and environmental 
information to identify other localities (in the same or other time period) with similar 
environmental conditions (Guisan & Zimmermann 2000). Depending on the approach, 
outputs of the various methods can be interpreted in various ways, as formal probabilities of 
presence, given the environmental conditions, or as mere indices of relative environmental 
suitability with undefined scaling, or as various other probabilities (Peterson et al. 2011). One 
thing that all of these methods share, however, is the need for data on spatio-temporal 
occurrences of a species, or PBD. 

One could argue that the exponential growth of SDM applications in the past 20 years 
(Guisan et al. 2013) results in large part from increases in PBD availability. Since, PBD 
available online is now approaching a billion records, such frequent and widespread use 
should not be surprising. However, experience shows that PBD cannot be used “as is” in 
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SDM applications without data preparation and cleaning. Indeed, some analyses have 
concluded that GBIF-mediated data in particular are not “fit for use” in analyses like SDM 
(Yesson et al. 2007, Beck et al. 2012; Beck et al. 2013; Otegui et al. 2013a; Otegui et al. 
2013b). Although after appropriate preparation, a degree of fitness for use can almost 
always be achieved, there is no doubt that GBIF, as an information resource, is not used as 
extensively as it could be due to many of those drawbacks. 

2. The challenges 

Three classes of difficulties affect accessible digital PBD, such as those mediated by GBIF: 
(i) those affecting the data per se, (ii) those affecting access to the data, and (iii) those 
related to the use of the data. These limitations are detailed and discussed below.  

Data issues 

Problems with the primary data are generally the result of various inaccuracies, biases, and 
spatial and environmental data gaps, leading to issues of data incompleteness and 
uncertainty (Graham et al. 2004; Soberón et al. 2007; Newbold 2010; Sousa-Baena et al. 
2013; Meyer et al. 2015a; 2015b; Hortal et al. 2015). Inaccuracies (errors, imprecision) that 
are most relevant in SDM are taxonomic (Graham et al. 2004) or locational (Hefley et al. 
2013), although temporal problems have also been discovered (Otegui et al. 2013a). Biases 
originate from many sources: observer choices (e.g., sampling focused along roads, field 
stations, rivers, etc.; Bojórquez-Tapia et al. 1995; Kadmon et al. 2004), biased taxonomic 
focus (e.g., many more records of birds than for other taxa; Hortal et al. 2008), goals of 
surveys other than preparing an inventory of species (Edwards et al. 2005), biased of 
defective methodologies (Anderson 2003) or political barriers to access (Peterson et al. 
2009). 

Incompleteness can spring from many causes. It can be taxonomic (Yesson et al. 2007), 
known as the ‘Linnean shortfall’ (Whittaker et al. 2005), or spatial (Meyer et al. 2015a; 
2015b), known as the “Wallacean shortfall” (Whittaker et al. 2005). Although many 
thousands of biodiversity records are ‘dark’ to use for lack of full taxonomic identification, 
perhaps the most significant information gap is that of georeferencing, which makes spatial 
views of the data difficult. SDM depends crucially on such spatial information. An important 
point that is often not appreciated is that modern and responsible SDM applications demand 
information on the precision and uncertainty associated with these georeferences. 

Access problems 

Problems of data accessibility include the point that full information is not always provided to 
users, and that functionalities that would allow users to query, extract, and manipulate data 
are lacking or difficult. Data are frequently served only partially either (1) to protect sensitive 
species against exploitation, or (2) to protect research interests of researchers. While the 
former may be a reasonable step for certain groups, in light of rampant exploitation, the latter 
should be kept within bounds, to prevent permanent information gaps. That is, keeping key 
information fields ‘dark’ for a few years while research reports are finalized, but if the process 
extends to years and decades, doubts arise over the progress of the research. For instance, 
Mexico’s CONABIO imposes a maximum delay for full disclosure of PBD records of 5 years 
on the data for which it provides funding. 

Use issues 

Further problems with the use of the data are that some PBD records may be used in 
analyses for which they were not suited (Beck et al. 2013; Joppa et al. 2013; Beck et al. 
2014). The most frequent of such problems in SDM manifest when users either use data 
without any data cleaning or quality control steps, or when users wish to create “large-scale” 
implementations (e.g., developing SDMs for all of the plants of Asia), which necessarily 
reduces the care that can be applied to any particular record. Although these lessons are 
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stated and restated in synthesis after synthesis of SDM methods (Peterson, 2011; Peterson, 
2014), many users nonetheless are not careful, and end up using PBD records 
inappropriately in SDM applications. 

Generalities 

We review these varied issues and propose solutions, based on literature, answers to an ad 
hoc survey, and our own experience. When looking at these problems, it is useful to 
consider the community to which each is most likely linked: by whom they were caused, by 
whom they are identified, and/or by whom they may be managed and fixed (Table 2). We 
distinguished three classes of actors earlier: data providers, data users, and data 
aggregators (in this case, GBIF). Some actors may play multiple roles (e.g., a curator of a 
collection who also conducts SDM analyses). Data issues and accessibility problems fall 
mostly with providers and aggregators, respectively, but both are usually identified and 
assessed by users. In contrast, weaknesses in usage are on the side of users, but are 
viewed, often with horror, by providers, aggregators, and especially users who read the 
resulting publications. It is thus particularly important to identify and discuss the roles of 
these different actors and their contributions, before attempting to solve these problems. 

 

Table 2. The three major actors in the PBD world, and their main activities. 

 Main activity Interaction 

Data Providers 
(DP) 

Generate, clean, maintain, and update data. 

Review data based on internal processes and 
needs 

Review data based on feedback by 
aggregators and users 

Data 
Aggregators 
(DA) 

Develop standards and protocols for data sharing 
and interoperability 

Provide agile, comprehensive, updated access to 
data. 

Provide tools to explore and visualize data 

Use feedback from users to flag 
records; channel feedback from users 
to providers 

Data Users 
(DU) 

Use data responsibly, via three components: 

Know the data  

Know the algorithms 

Know the species 

Provide crucial use cases to demonstrate the 
importance of these initiatives 

Communicate observations to 
aggregators or providers; publish use 
cases 

 

The most pressing issues are those related to the reliability of the PBD records. In general, 
because these problems derive from the original databases made available via GBIF, in 
some sense, fixing them should be the responsibility of the providers. The reasons why PBD 
records are biased, incomplete, or include inaccuracies/errors, relate in largest part to the 
opportunistic data gathering process associated with these data. Generally speaking, the 
data records were accumulated with different aims and methodologies. Putting these data 
together in a PBD index like GBIF results in a melting pot of heterogeneous data that 
requires careful work to be fit for scientific uses (Soberón et al. 2002b; Graham et al. 2004). 
This process is certainly not optimized to meet objectives of taxonomic, environmental, and 
geographic completeness, not to mention other perspectives of biodiversity (Dawson et al. 
2013, Hortal et al. 2015). Indeed, the process is so heterogeneous that one cannot trust that 
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each observer will have followed expected standards for collecting data, in terms of 
taxonomic or geographic accuracy, or in terms of the data types to be recorded (simple 
occurrence, abundance, population parameters, or other characteristics). Basic data-record-
level errors, inconsistencies, and inaccuracies may be identified and corrected by relatively 
simple validity checks, but more systemic biases and incompleteness need more advanced 
methods and tools (see section 3.4). 

Biases and incompleteness can be remedied, at least to a limited extent, by building their 
consideration directly into the use of the data (e.g. use of bias surfaces in species 
distribution models (Phillips et al. 2009; Hijmans 2012). Such activities are the province of 
users: given the magnitude of the challenge and extent of the gaps, they will require 
extensive collaboration, training, and funding (Costello et al. 2010; Wheeler et al. 2012). For 
instance, a detailed study of drivers of data completeness concluded that “completeness is 
mainly limited by distance to researchers, locally available research funding and participation 
in data-sharing networks, rather than transportation infrastructure, or size and funding of 
Western data contributors” (Sousa-Baena et al. 2013; Meyer et al. 2015a; Meyer et al. 
2015b). More such studies are needed. 

 
Difficulties of access are quite complex, and a combination of responsibilities of providers, 
users and aggregators. For instance, on the side of the aggregators, not all data necessary 
for certain analyses are available in the main, easily available views of GBIF.org; even if 
available, it may not be easy to access by users not capable of programming and scripting 
(e.g., accessing the data through an application programming interface, API). Moreover, 
currently, GBIF’s database contains a very large number of fields, corresponding in large 
part to those in DarwinCore, but many of them are empty or nearly so. Sometimes this 
appears to be an issue with GBIF (i.e., fields that are populated in the provider version, and 
empty in GBIF’s, as an example with the field “coordinateUncertaintyInMeters” and the 
provider VertNet shows e.g. for Artibeus watsoni), but sometimes this is an issue with the 
providers sending sparse datasets. Now, although conceivably some users may need the full 
Darwin Core dataset in a query, to access the total of the GBIF-mediated data, one needs to 
query the API directly, using programming tools, or download the database entirely, which is 
expensive in time and memory, as well as inefficient. This in turn becomes a challenge for 
the user. In the case of SDM, having access to uncertainty fields related to names, dates 
and georeferences is important. Ensuring that providers fully populate these fields may be 
impossible. That GBIF always imports them when available should be feasible, and that 
users are capable of accessing all the available datasets, probably via the API, or via an 
enhanced interface by GBIF, remains a thorny problem. 

The final set of problems is the way in which data are misused. Clearly, this problem is 
mostly the responsibility of users. Examples of some misuses identified in our survey 
included use of coarse-resolution data to analyze phenomena at finer resolutions; lack of 
awareness of data inconsistencies; lack of experience with the taxonomy of the group in 
question leading to misidentification errors; or naïve use of complex software without 
appreciation of the caveats and assumptions (Joppa et al. 2013, Jamevich et al. 2015). 

3. The solutions 

In this section, we review briefly steps that could be taken towards enabling fuller and more 
effective use of existing biodiversity data. Key steps include adding the following elements: 

 Encouraging providers to add geographic information as completely as possible 
(complying with the existing protocols, like the Darwin Core) to each biodiversity 
data record, accompanied by appropriate and complete metadata documentation 
of sources, methods, and associated uncertainty. GBIF then should ensure that 
the raw and verbatim versions of the databases, at least, contain such data. 
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 Make the users more aware of the existing ‘flags’ that individually identify records 
that include inconsistencies that may hallmark errors or problems in various 
dimensions12, and develop new ones as necessary. 

 Keep working on fully permanent, stable, individual-record-level identifiers that 
permit full cross-linking and enriching of PBD records with the information 
provided by other users. 

To the extent that such steps towards improving PBD fitness-for-use can be implemented 
fully, the data will take on greatly amplified utility and importance as a scientific information 
resource. 

3.1 Georeferencing 
Ideally, PBD records would include both a description of the locality and geographic 
coordinates at fine spatial resolutions on the order of 10-103 m. In practice, a very large 
proportion of data in PBD databases include only verbal descriptions of a geographic 
reference, such as “USA, Kansas, Douglas County, Lawrence, 5 km NNW.” While 
informative, such textual descriptions can be complex and difficult to use in large quantities, 
such that their translation into standardized, GIS-readable geographic coordinates is an 
enormous priority. This task, accomplished rigorously, can be performed ideally by providers 
or by users with specialized knowledge. This step is important—not just that it be taken, but 
that it be done right—as recent analyses indicate that the quality of georeferencing has 
major influences on the outcomes of SDMs (Engler et al. 2004; Graham et al. 2008; Lash et 
al. 2012). 

In the fairly early history of biodiversity informatics, the Mammal Networked Information 
System initiative made important advances in georeferencing (Stein and Wieczorek 2004), 
centered around (1) establishment of methodologies that are well-documented and well-
founded, (2) provision of detailed metadata documentation, and (3) close linkage between 
the georeferencing protocols and data architecture of the DarwinCore. The result, after 
several years of experimentation and experience gained in the course of several major 
projects, was a georeferencing protocol that is both practical and feasible to implement, and 
optimized and customized for biodiversity applications (Wieczorek et al. 2004; Chapman 
2005; Chapman et al. 2006). This general protocol has also now seen quite a bit of 
investment of development effort towards automating and digitally enabling the process 
(Guralnick et al. 2006; Rios & Bart 2008). 

As was demonstrated by the VertNet initiative in the USA (Constable et al. 2010), major data 
aggregators can play a crucial role in these data-improvement steps. A key point is that 
whenever available, GBIF should include the crucial summary of georeferencing uncertainty, 
for instance, the CoordinateUncertaintyInMeters of VertNet (Wieczorek et al. 2004). 
Although full automation of georeferencing is not yet feasible, parts of the process can be 
automated (Guralnick et al. 2006), which could be implemented centrally by the data 
aggregator. More importantly, however, data aggregators can use their networks to 
coordinate and enable georeferencing initiatives: the aggregator can create data packets 
consisting of the un-georeferenced records for certain taxa and/or regions, and facilitate their 
distribution to expert georeferencers (e.g., the scientific community of the region, the 
specialists on the taxon), as well as facilitating communication of the now-georeferenced 
records back to the original data providers, for addition to the original data record. This role 
can be key, as was demonstrated in the success of the VertNet initiative in this regard; GBIF 
could play this role at a global level, given its massive network of participants. Proper 
feedback by the original providers should be enabled as well. 

                                                
12 http://gbif.github.io/gbif-api/apidocs/org/gbif/api/vocabulary/OccurrenceIssue.html, and 
http://www.gbif.org/infrastructure/processing  

http://gbif.github.io/gbif-api/apidocs/org/gbif/api/vocabulary/OccurrenceIssue.html
http://www.gbif.org/infrastructure/processing
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3.2 Error flagging and data cleaning 
PBD records can hold georeferences and still have errors and inconsistencies, to the point 
that they are not usable in analyses. Indeed, lack of care with respect to data consistency 
can have major and significant influences on the outcomes of SDMs (Peterson et al. 2014). 
Although at times it may be possible to identify actual errors, more commonly, the focus is 
on identifying data records that present inconsistencies and conflicts, either internally (e.g. 
geographic coordinates fall in a state other than that specified in the textual state field) or 
externally (e.g. taxon does not match an authority list or a list of taxa known from a particular 
country). Additional efforts may flag records with strong environmental departure from other 
records of the species, or may use collectors’ itineraries to detect unlikely combinations of 
collection locality and date. In instances in which inconsistencies exist, the user should be 
extremely careful when using them. Search for consistency holds great promise in ensuring 
that data records are sufficiently free of errors for SDM performance not to be affected. If 
provided with reliable maps of subnational units GBIF could implement inconsistency 
analysis below the level of country, but this is contingent on the resolution and precision of 
subnational maps, and on criteria for inconsistency. Perhaps this type of inconsistency 
analysis should be left to the user, given the sheer magnitude of possibilities and details. 

Several protocols and workflows for data cleaning have been proposed (Chapman 2005); 
efficient and highly visual online implementations have already been developed and applied 
to Brazilian biodiversity data (CRIA 2012). CONABIO in Mexico has developed handbooks 
used for data-cleaning, encompassing both georeferenced and taxonomic data cleaning 
(CONABIO 2012). 

 An efficient design for mass implementation of this step would involve centralized 
application of the data-cleaning tools, as several such tools will be more efficient when data 
are pooled as broadly as possible (e.g. Peterson et al. 2004). However, crowd-sourcing of 
this data-quality assurance step represents another option: inconsistencies and 
incongruences identified by users should be flagged and transmitted to the data providers for 
evaluation and potential incorporation into primary data records. Alternatively, interested 
communities or consortia can do this assessment step, to ensure data quality for their 
desired applications (Anderson 2012). The final stage of this process is that of either 
incorporating the corrections to the erroneous fields or flagging records as dubious or 
possibly problematic, in the original data sets curated and maintained by the data providers; 
this step has proven cumbersome at times, both as regards data quality and in terms of 
adding georeferences, as data providers have not always been particularly efficient in 
‘ingesting’ data improvements back into original data sets. 

 3.3 Individual identifiers and cross-linking data realms 
For two major reasons, one key innovation in biodiversity informatics is that of adding a 
unique, permanent, and stable identifier to individual records (GBIF 2011). The first reason is 
that such identifiers will greatly promote the repatriation, ingestion, and incorporation of 
changes and additions offered either by users or by aggregators (see Table 2), but that 
should be added to data sets by providers. The second reason is that these identifiers will 
allow linkages between data realms. This has been highlighted as key for this field for some 
time (Peterson et al. 2010), and is the focus of several of the suggestions and changes that 
are proposed later in this report as useful in next generations of SDMs. 

The potential for producing and using such identifiers has already been incorporated in some 
of the data infrastructures (e.g. fields gbifID, occurrenceID at GBIF.org). However, full 
implementation in the sense of broad agreement regarding a preferred mechanism (e.g., the 
need of cross-linking among unique identifier systems13) has not yet occurred. We note that 
the current DOI implementation in the GBIF data portal creates unique identifiers for query-

                                                
13 http://devpost.com/software/bioguid-org  

http://devpost.com/software/bioguid-org
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level entities, not for individual records, and as such is not sufficient. This step of 
implementing full, individual-level identifiers is crucial to the error repatriation, data record 
improvement, and cross-linking among data realms that is called for in this review. 

3.4 Data visualization and GAP analysis 
As mentioned above, PBD records on biodiversity are full of biases and gaps. Existing data 
resources can be the basis for detailed analyses of gaps in coverage to guide strategic 
mobilization of resources (Soberón et al. 2004) or at least to identify them (Sousa-Baena et 
al. 2013, Pelayo-Villamil et al. 2015). Such analyses will identify well-sampled groups and 
localities as well as priorities to focus efforts to fill the last remaining gaps, so that coverage 
globally is as complete as is feasible (Sousa-Baena et al. 2013; Kouao et al. 2015). 

Once gaps are identified, they can be either filled, as a more permanent remedy, or 
considered explicitly in analyses, for a given use. In taxonomic dimensions, poorly-known 
taxa can be prioritized for de novo data generation or for mobilizing data presently in analog 
formats. In temporal dimensions, detecting and filling gaps (and their converse, well-sampled 
sites) allows before-and-after comparisons of biotic community composition at different 
points in time (Peterson et al. 2015). Finally, in geographic dimensions, individual regions, 
countries, or states, can be the focus of concerted georeferencing efforts (or, if necessary, 
data capture efforts) that fill gaps (Navarro-Sigüenza et al. 2003). Different user communities 
will have different interests and priorities, such that consortia can assemble to fill gaps and 
improve data fitness for use towards those needs (Figure 4). 

 

 

Figure 4. World bird geographic knowledge, expressed as degree of completeness (an index that goes from red when the estimated 
number of species is close to the observed, towards blue where the ratio of observed to expected is smaller than 0.5, to white where the 
database is empty or the ratio C is less than 0.1). Data as November of 2014, based on 167M records from GBIF. A. T. Peterson et al., 

unpublished data.  

Consider Figure 4, which summarizes completeness of PBD records for birds of the world, 
based on GBIF-mediated data from late 2014. Some major gaps that can be noted include 
(1) Russia, other portions of the former Soviet Union, and China; (2) the Sahara Desert and 
Middle East; (3) the Congo Basin; and (4) the Pacific islands. Interestingly, these gaps have 
different solutions: for instance, one gap can be resolved via political agreements with 
Russian and Chinese institutions that already have massive digital data resources that are 
not as yet broadly integrated into the global PBD resource. Gaps #2 and #4, on the other 
hand, depend much more on single institutions (Natural History Museum in London for #2, 
American Museum of Natural History for #4) digitizing key data resources, as the richest 
collections from those regions are housed in those single institutions. Finally, in the case of 
the Congo Basin, although significant collections are indeed housed in the Royal Museum 
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for Central Africa and smaller holdings exist in other institutions (e.g., American Museum of 
Natural History), a fullest sampling and dense coverage of this region may require additional 
field work. These examples of gaps are at a global scale, and are certainly over-simplified, 
but they illustrate the diversity of solutions to this problem.  

Indeed, an intriguing possibility for a next generation of GBIF functionalities is that GBIF 
would provide summary data products that can be used as ‘bias surfaces’ for a variety of 
purposes that users might have. These maps would not just be counts of available points, 
but also of completeness indices and related indices. Such mapping of knowledge and 
ignorance should constitute one of the most important future challenges (as e.g. inSoberón 
et al. 2007, Meyer et al. 2015a; 2015b; Ruete et al. 2015). 

3.5 Training of users 
Many “problems” highlighted in our survey of PBD users were, in a strict sense, a 
manifestation of users not being aware of the caveats and complications underlying rigorous 
and proper SDM analysis. Although GBIF may not be the right organization to deal with the 
training of users, many training initiatives exist that provide access to such improved 
knowledge e.g., the Biodiversity Informatics Training Curriculum14 (GBIF 2015). Moreover, 
other organizations, like the JRS Biodiversity Foundation15 are supporting such initiatives, 
and for GBIF this is a great opportunity to partner and perhaps leverage resources 
specifically designed to train a larger community of sophisticated users, mostly in developing 
countries. 

5. Future perspectives 

This review, so far, has focused on well-known gaps and problems that have been pointed 
out several times in the past, and that should be remedied. In this section, we attempt to look 
into the future of the SDM field, and to anticipate needs and innovations that may arise. This 
set of considerations presents new challenges and new opportunities for the interaction 
between PBD providers and SDM. 

5.1 Modelling and sampling  
Models and spatial analyses can help design sampling strategies to complement data gaps 
for species (Guisan et al. 2006; Le Lay et al. 2010; Mokany et al. 2011, Meyer et al. 2015b), 
groups of species, or entire floras or faunas. These models can be used to design 
prospective sampling in a framework embedded within biodiversity databases that allows 
using models to improve sampling, update or generate new data, which are then used to 
update the models. This sequence can be repeated in an adaptive framework until data and 
models are improved to reach given standards (Guisan et al. 2006). Models to design new or 
complementary sampling can follow standard sampling theories (Hirzel & Guisan 2002; 
Edwards et al. 2005; Albert et al. 2010), such as using model predictions to design a 
random-stratified sampling (Hirzel & Guisan 2002), where the stratifying variable are the 
predictions themselves (reclassified in two or more classes, from suitable to non-suitable). 
Models can also be used to support the improvement of data completeness (Mokany et al. 
2011), e.g. using macro-ecological model predictions (e.g. species richness) to set the 
expected number of species to be found in a given cell, and compare these predictions to 
the actual number recorded for these cells in GBIF or other databases to identify the cells 
likely to be deficient in data, and ideally identify which species are missing (Pineda & Lobo, 
2009). 

                                                
14 http://biodiversity-informatics-training.org  

15 https://www.facebook.com/JRSBDF  

http://biodiversity-informatics-training.org/
https://www.facebook.com/JRSBDF
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5.2 New data realms 
The basic suite of fields that has been part of the idea of PBD is largely limited to the 
documentation of a taxon, where it occurred, and when the record was noted. However, we 
envision improvements and innovations in SDM, and propose a series of links to additional 
data realms that will almost certainly enrich and broaden the impact of this suite of tools in 
science. That is, each of the following points constitutes a set of information not presently 
manifested within the DarwinCore data architecture, but could be added to the data 
resource, either by means of additional data sets or data fields hosted by GBIF, or via 
partnership and linkage with entities already working in these realms. 

The rationale for addition of these new data realms is rooted in the fact that primary 
biodiversity data will continue to be biased, even if all existing information in the scientific 
literature and natural history collections is compiled. This permanent bias exists because the 
ultimate cause of these biases is the heterogeneous distribution of taxonomic resources and 
the systematics workforce, a shortcoming that is difficult to solve. In one sense, building PBD 
resources and SDMs are strategies whose successes or failures are mutually dependent. 
Precise knowledge of the biodiversity distribution on Earth will require use of models to 
predict and interpolate distributions of species from the partial information in PBD records, 
and improvement of SDM predictions should involve the use of a representative subset of 
data capable of accurately representing the entire unknown “universe.” 

Documenting sampling biases and absences of species 

Identification of gaps in PBD is a basic requirement for designing new explorations, but is 
also indispensable for providing a necessary correction in distributional hypotheses derived 
from their use. Unfortunately, most data available through PBD portals lack associated 
measures of sampling effort, and very few provide explicit references to absence of species 
at sites. In practice, this problem has been solved for SDMs by resorting to so-called 
“pseudoabsences,” whereby absence information is created artificially to enable use of 
regression or other discriminant methods, or samples from the background are used thus 
contrasting the environments in the presences with those in the region in question (Phillips et 
al. 2009). Both methods have their own problems (Pearce & Boyce 2006; Ward et al. 2009; 
Royle et al. 2012) and impede the rigorous estimation of occurrence probabilities (Royle et 
al. 2012), and a crucial step in using such pseudoabsence approaches is that of delimiting 
the sampling background based on rigorous and explicit biogeographic bases (Barve et al. 
2011). Were GBIF to implement tools capable of detecting and characterizing gaps, well-
surveyed sites, and uncertain sites, it would be a great asset for progress towards the 
development of more efficient distribution models. 

Nevertheless, on the user side, several procedures can be used on presence-only data to 
identify well-surveyed regions or localities that would reinforce the assumption that a species 
is absent (Lobo & Martín-Piera et al. 2002; Anderson et al. 2003; Hortal et al. 2008). In all 
such analyses, assumed characteristics of well-surveyed localities (its species composition, 
the shape of their collector curves, etc.) are compared to those at the remaining localities, 
and a threshold or criteria used to discriminate between them (Soberón et al. 2007). With 
this simple procedure, modelers can weight more heavily those sites that have been 
sampled well in development of models (Lobo et al. 2010), but also the location of uncertain 
areas not well-surveyed, which would be accorded less weight. For this purpose, it would be 
recommended not to reject the frequently redundant information about species occurrences 
coming from intensively and long-time studied localities; although this information may not 
add relevant species distribution information, it will be very important to demonstrate the 
intensive character of the survey carried out in this area. Another key functionality will be to 
allow the user to specify the relevant sets of taxa that have been sampled similarly to the 
species of interest (Anderson et al. 2003). 
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Adding data on abundance and numbers of individuals 

Abundance data would enable a whole new set of statistical techniques to be applied to PBD 
records (Franklin 2010), and, if collected frequently, enable questions of a dynamic nature to 
be addressed (Peterson et al. 2008), something that is either impossible or difficult using 
traditional correlative SDMs, which are much more static in nature (Svenning & Skov 2004, 
Guisan & Thuiller 2005). At present, digitally available PBD of species abundance is largely 
restricted to birds in the United States, Canada and western Europe (although this situation 
is changing) that have large communities of nature observers, such as eBird16; EuroBird17 
and other similar networks. Countries like Norway, the United Kingdom, Sweden and 
Switzerland have very dense and well-populated networks of observations of many 
taxonomic groups, often documenting abundance, but these cases are exceptional. These 
datasets are huge in size, and are expanding in geographic coverage, so their potential to 
answer dynamic questions cannot be underestimated; GBIF should ensure that such 
databases continue to be served. 

There are also data portals that provide access to data on abundances of species, like the 
NCEAS/Imperial College Global Population Dynamics database18. Although these data are 
sparse geographically, as are most ecological data (Martin et al. 2012), data about species 
abundances published by ecologists represent a valuable resource that can be used in 
SDMs, as illustrated in several recent studies (Guisan & Harrell 2000, Iverson et al. 2008; 
Peterson et al. 2008, Randin et al. 2009). For such ancillary data, data aggregators need to 
ensure that linking fields exist, that they are populated where abundance data exist, and that 
their existence is well documented. 

Genetic and genomic data 

A clear awareness has emerged that models developed based on recognized species-level 
entities may be a gross oversimplification. For instance, significant niche differentiation has 
been documented within a single recognized species of triatomine bug that vectors Chagas 
disease (Triatoma dimidiata), such that a single, species-level model may well be overly 
broad and inclusive, and not representative of the niche of any one population (Gómez-
Palacio et al. 2015). In such situations, linking primary biodiversity data records to data on 
gene or genome sequences (e.g., GenBank), such that niche models correspond to 
evolutionary lineages, may be highly informative, allowing identification of monophyletic 
evolutionary lineages for analysis. A further approach may involve modeling and tracking 
specific genetic elements, perhaps even from ecological genomic data sets that do not 
necessarily even link to particular organisms, but rather to presence of genetic elements in a 
place at a point in time (Fournier-Level et al. 2011; Fitzpatrick & Keller 2015). 

Movements and dispersal 

The recent hybrid models integrating dynamic processes in SDMs are very data hungry, and 
require information related to physiology, interactions, and movements (Cabral & Schurr 
2010; Smolik et al. 2010; Barve et al. 2011; Dullinger et al. 2012, Schurr et al. 2012). 
Movement-related information is of several types (migratory, home-range, tracking, 
dispersal, etc.; Matthysen 2012). Several more or less publicly available data resources 
currently provide access to such data19. However, to our knowledge no databases exist that 
document the key numbers required to define dispersal kernels of species (Nathan & Muller-
Landau 2000), which would be what is required to parameterize the movement part of 
process-oriented SDMs. The data exist in large quantities in the literature (e.g. Vittoz & 

                                                
16 http://ebird.org/content/ebird  

17 http://www.eurobirdportal.org/ebp/en  

18 http://www3.imperial.ac.uk/cpb/databases/gpdd  

19 https://migbirdapps.fws.gov/mbdc/databases/db_selection.html  

http://ebird.org/content/ebird
http://www.eurobirdportal.org/ebp/en
http://www3.imperial.ac.uk/cpb/databases/gpdd
https://migbirdapps.fws.gov/mbdc/databases/db_selection.html
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Engler 2007), but have never been organized as digitally available knowledge. It is an open 
question whether GBIF should embark on creating and populating such a database, with all 
the work and effort that would entail; certainly, though, providing the unique identifiers that 
will permit individual PBD records to be linked to documentation of particular movements 
(e.g., a record of an individual that was ringed at one spot and recovered at another as more 
than two records of occurrence of that particular species) is a crucial enabling step. 

Biotic interactions 

The presence and absence of a species in any given locality are not independent of the 
distributions of other species. The mechanisms controlling co-existence of species are still 
the focus of intensive research. Although increasingly clear that predicting distributions of 
species in space and time often requires understanding the effects of biotic interactions 
(Davis et al. 1998; Gilman et al. 2010; González-Salazar et al. 2013; Wisz et al. 2013; Araújo 
& Rozenfeld 2014; Mod et al. 2015), documentation of the direct and indirect interactions 
among species is a daunting task. For example, identifying direct species interactions within 
a system with only seven species would require documentation of 42 potential links and up 
to 13,650 links if indirect interactions were considered (Dodds & Nelson 2006). Given that 
most systems have more than seven species, documentation of all biotic interactions at any 
site (let alone across the world) is beyond reach (Morales-Castilla et al. 2015). 

An alternative to documenting interactions among species extensively is to use ecological 
theory and models to predict the backbone of biotic interactions networks (Kissling et al. 
2012). A conceptual framework was recently proposed that enables inferences of backbones 
of interaction networks by sequentially pruning potential networks from forbidden and 
unlikely species links. Such pruning of networks can be made using prior knowledge on the 
functional, phylogenetic and geographical relationships among species (Morales-Castilla et 
al. 2015). 

Inferences of interactions thus require that relevant datasets exist on species traits (e.g., 
PanTHERIA, Try, Jones et al. 2009; Kattge et al. 2011), species distributions (e.g., GBIF, 
Map of Life), and phylogenetic relationships among species (e.g., GenBank, Tree of Life), as 
well as that effective linkages are established among them, which will require the individual, 
record-level identifiers discussed above. Effective structuring that permits specification of 
one-to-one interactions at the individual level (e.g., insect specimen number XXXX was 
collected on plant specimen number YYYY) will be an effective path to such detailed 
documentation of interactions, at least in the long run (see the example analyzed in Estrada-
Peña et al. 2015). Even if comprehensive documentation of the biotic interactions that are 
established among organisms on Earth is beyond current capabilities, existing data on biotic 
interactions should be linked to trait, distribution, and phylogenetic databases to enable 
training of the models and testing of their inferences. Initiatives such as Globis20 (Poelen et 
al. 2014) or the Web of Life21, that record primary observations of interactions between 
individuals of different species in different parts of the world, should be linked with and 
integrated within major biodiversity data portals. 

Physiological information 

Species distributional limits are constrained primarily by aspects of the environment, such as 
climate, and species’ physiological responses to those conditions (Thomas 2010). SDMs 
have been utilized for making inferences about the environmental factors controlling species 
distributional limits, but recent research suggests that modelled estimates of species-
environmental tolerances are highly conservative, while physiological limits of species being 
much broader (Araújo et al. 2013). Integrating SDMs with specific physiological 
measurements and models can offer deep insights into factors controlling distributions of 

                                                
20 http://www.globalbioticinteractions.org  

21 http://www.web-of-life.es  

http://www.globalbioticinteractions.org/
http://www.web-of-life.es/
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species (Barve et al. 2014, GEB). Improving understanding of mechanisms governing 
species distributions thus requires that data on species physiological environmental 
tolerances be linked on an individual basis to PBD records. At the moment, such 
physiological data are scattered in the literature with a relatively small number of reviews 
compiling small parts of a larger body of data available (Addo-Bediako et al. 2000; Chown et 
al. 2002; Clusella-Trullas et al. 2011; Sunday et al. 2011; Hoffmann et al. 2013). Therefore, 
individual identifiers permitting the linking of physiological data to PBD databases such as 
GBIF once again become crucial. 
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Appendix. A survey of fitness for use of GBIF data for SDM. 

The members of the Task Group created a survey for the biodiversity informatics community, 
aimed specifically on those likely to use GBIF data for modeling species distributions. They 
compiled a database of names of researchers considered particularly relevant, and invited 
those persons to take the survey. Additionally, the survey was opened to the biodiversity 
informatics community worldwide, and publicized through email, social media (Facebook, 
Twitter, etc.), and word of mouth. This effort yielded 137 responses from scientists in31 
countries22. Responders provided overwhelmingly consistent answers to issues of data 
shortcomings and presentation, annotations from users, feedback to providers, and 
repositories of occurrence data used in peer-reviewed publications. A variety of practical 
problems surfaced regarding the interface itself . Regarding principal problems of the data, 
78% noted issues with the georeferences. Importantly, respondees mentioned how the GBIF 
portal could be improved in two regards. First, 89% would find quantification/mapping of 
sampling effort/data completeness useful. Second, annotations of data quality (and 
communication from users and to data providers) were seen as critical, in the following 
particular ways. Almost all suggested that users be allowed to annotate data (56% “very 
important” + additional 43% “important”), and that those annotations be transmitted 
automatically to data providers (56% “very important” + additional 41 “important”). To 
rounding error, 100% of respondees saw great utility in GBIF transmitting information to data 
providers, including annotations of ID quality (80% “very important” + additional 20% 

                                                
22 Argentina, Australia, Belgium, Benin, Brazil, Cameroon, Canada, Chile, Colombia, Denmark, Ecuador, 
Finland, France, Germany, India, Ireland, Italy, Kenya, Mexico, Netherlands, New Zealand, Peru, Portugal, 
South Africa, Spain, Sweden, Switzerland, UK, Uruguay, USA, Venezuela 
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“important”) and georeferences (85% “very important + additional 15% important”). 
Nevertheless, most (39% “very important” + additional 37% “important”) suggested that 
users be allowed to annotate only certain parts of the data (taxonomy/geography), and 
almost all (57% “very important” + 36% “important”) advocated allowing users to provide a 
quality or “fit for use” tag for individual records. Closing the loop regarding feedback and data 
quality, they considered it very important (55%) or important (44%) that data providers spend 
the time and money required to correct/update data (taxonomically/geographically) as per 
observations provided by users. Finally, a large majority (77%) thought that the field would 
be well served by a single online repository/archive for point occurrence data published in 
peer-reviewed journals. An even larger number were highly supportive (59%) or supportive 
(31%) of GBIF being *a* repository for such data. 


