309 research outputs found

    How a marine debris environmental education program plays to strengths of linguistically diverse learners

    Get PDF
    Although environmental education (EE) has increased focus on how to best serve diverse populations, one understudied area is how linguistically diverse learners may engage with EE programming. Linguistic diversity is on the rise across the United States; for instance, nearly one-third of all children between the ages of 0 and 8 have at least one parent who speaks a language other than English in the home. This study evaluated impacts of an EE curriculum designed to promote pro-environmental behavior change with a pre-post, treatment-control experimental design among students from linguistically diverse households. In partnership with teachers, we implemented the curriculum in elementary schools across the state of North Carolina, United States. Over two school years (2018–2020), 36 teachers from 31 schools across 18 counties participated in the study, providing 644 paired pre-post student responses (n = 204 control; n = 440 treatment). About 10% of the sample (n = 49 treatment, n = 18 control) reported speaking a language at home other than English. We tested hypotheses that the curriculum would increase pro-environmental behavior change among all students, but particularly among those from linguistically diverse households using multiple linear regression. Results indicate that the curriculum effectively encouraged pro-environmental behaviors for all students on average, but particularly among linguistically diverse students, adding to growing examples of the equigenic effects of environmental and nature-based education. These findings are consistent with research demonstrating that EE can contribute to behavior change among young learners and may be particularly well-suited to resonate with the unique contributions of linguistically diverse learners

    Enabling Venus In-Situ Science - Deployable Entry System Technology, Adaptive Deployable Entry and Placement Technology (ADEPT): A Technology Development Project funded by Game Changing Development Program of the Space Technology Program

    Get PDF
    Venus is one of the important planetary destinations for scientific exploration, but: The combination of extreme entry environment coupled with extreme surface conditions have made mission planning and proposal efforts very challenging. We present an alternate, game-changing approach (ADEPT) where a novel entry system architecture enables more benign entry conditions and this allows for greater flexibility and lower risk in mission desig

    Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research

    Full text link
    This review discusses the current status of supermassive black hole research, as seen from a purely observational standpoint. Since the early '90s, rapid technological advances, most notably the launch of the Hubble Space Telescope, the commissioning of the VLBA and improvements in near-infrared speckle imaging techniques, have not only given us incontrovertible proof of the existence of supermassive black holes, but have unveiled fundamental connections between the mass of the central singularity and the global properties of the host galaxy. It is thanks to these observations that we are now, for the first time, in a position to understand the origin, evolution and cosmic relevance of these fascinating objects.Comment: Invited Review, 114 pages. Because of space requirements, this version contains low resolution figures. The full resolution version can be downloaded from http://www.physics.rutgers.edu/~lff/publications.htm

    Single Amino Acid Variation Underlies Species-Specific Sensitivity to Amphibian Skin-Derived Opioid-like Peptides

    Get PDF
    It has been suggested that the evolution of vertebrate opioid receptors (ORs) follow a vector of increased functionality. Here we test this idea comparing human and frog ORs. Interestingly, some of the most potent opioid peptides known have been isolated from amphibian skin secretions. Here we show that such peptides (dermorphin and deltorphin) are highly potent in the human receptors and inactive in frog ORs. The molecular basis for the insensitivity of the frog ORs to these peptides was studied using chimeras and molecular modeling. Interestingly, the insensitivity of the delta opioid receptor (DOR) to deltorphin was due to variation of a single amino acid– Trp7.35—which is a leucine in mammalian DORs. Notably, Trp7.35 is completely conserved in all known DOR sequences from lamprey, fish and amphibians. The deltorphin-insensitive phenotype was verified in fish. Our results provide a molecular explanation for the species selectivity of skin-derived opioid peptides

    Single Molecule Conformational Memory Extraction: P5ab RNA Hairpin

    Get PDF
    Extracting kinetic models from single molecule data is an important route to mechanistic insight in biophysics, chemistry, and biology. Data collected from force spectroscopy can probe discrete hops of a single molecule between different conformational states. Model extraction from such data is a challenging inverse problem because single molecule data are noisy and rich in structure. Standard modeling methods normally assume (i) a prespecified number of discrete states and (ii) that transitions between states are Markovian. The data set is then fit to this predetermined model to find a handful of rates describing the transitions between states. We show that it is unnecessary to assume either (i) or (ii) and focus our analysis on the zipping/unzipping transitions of an RNA hairpin. The key is in starting with a very broad class of non-Markov models in order to let the data guide us toward the best model from this very broad class. Our method suggests that there exists a folding intermediate for the P5ab RNA hairpin whose zipping/unzipping is monitored by force spectroscopy experiments. This intermediate would not have been resolved if a Markov model had been assumed from the onset. We compare the merits of our method with those of others

    Conditions of malaria transmission in Dakar from 2007 to 2010

    Get PDF
    Background: Previous studies in Dakar have highlighted the spatial and temporal heterogeneity of Anopheles gambiae s.l. biting rates. In order to improve the knowledge of the determinants of malaria transmission in this city, the present study reports the results of an extensive entomological survey that was conducted in 45 areas in Dakar from 2007 to 2010. Methods: Water collections were monitored for the presence of anopheline larvae. Adult mosquitoes were sampled by human landing collection. Plasmodium falciparum circumsporozoite (CSP) protein indexes were measured by ELISA (enzyme-linked immunosorbent assay), and the entomological inoculation rates were calculated. Results: The presence of anopheline larvae were recorded in 1,015 out of 2,683 observations made from 325 water collections. A water pH of equal to or above 8.0, a water temperature that was equal to or above 30 degrees C, the absence of larvivorous fishes, the wet season, the presence of surface vegetation, the persistence of water and location in a slightly urbanised area were significantly associated with the presence of anopheline larvae and/or with a higher density of anopheline larvae. Most of the larval habitats were observed in public areas, i.e., freely accessible. A total of 496,310 adult mosquitoes were caught during 3096 person-nights, and 44967 of these specimens were identified as An. gambiae s.l. The mean An. gambiae s.l. human-biting rate ranged from 0.1 to 248.9 bites per person per night during the rainy season. Anopheles arabiensis (93.14%), Anopheles melas (6.83%) and An. gambiae s.s. M form (0.03%) were the three members of the An. gambiae complex. Fifty-two An. arabiensis and two An. melas specimens were CSP-positive, and the annual CSP index was 0.64% in 2007, 0.09% in 2008-2009 and 0.12% in 2009-2010. In the studied areas, the average EIR ranged from 0 to 17.6 infected bites per person during the entire transmission season. Conclusion: The spatial and temporal heterogeneity of An. gambiae s.l. larval density, adult human-biting rate (HBR) and malaria transmission in Dakar has been confirmed, and the environmental factors associated with this heterogeneity have been identified. These results pave the way for the creation of malaria risk maps and for a focused anti-vectorial control strategy

    The role of salinity in the decadal variability of the North Atlantic meridional overturning circulation

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Climate Dynamics 33 (2009): 777-793, doi:10.1007/s00382-008-0523-2.An OGCM hindcast is used to investigate the linkages between North Atlantic Ocean salinity and circulation changes during 1963–2003. The focus is on the eastern subpolar region consisting of the Irminger Sea and the eastern North Atlantic where a careful assessment shows that the simulated interannual to decadal salinity changes in the upper 1500 m reproduce well those derived from the available record of hydrographic measurements. In the model, the variability of the Atlantic meridional overturning circulation (MOC) is primarily driven by changes in deep water formation taking place in the Irminger Sea and, to a lesser extent, the Labrador Sea. Both are strongly influenced by the North Atlantic Oscillation (NAO). The modeled interannual to decadal salinity changes in the subpolar basins are mostly controlled by circulation-driven anomalies of freshwater flux convergence, although surface salinity restoring to climatology and other boundary fluxes each account for approximately 25% of the variance. The NAO plays an important role: a positive NAO phase is associated with increased precipitation, reduced northward salt transport by the wind-driven intergyre gyre, and increased southward flows of freshwater across the Greenland-Scotland ridge. Since the NAO largely controlled deep convection in the subpolar gyre, fresher waters are found near the sinking region during convective events. This markedly differs from the active influence on the MOC that salinity exerts at decadal and longer timescales in most coupled models. The intensification of the MOC that follows a positive NAO phase by about 2 years does not lead to an increase in the northward salt transport into the subpolar domain at low frequencies because it is cancelled by the concomitant intensification of the subpolar gyre which shifts the subpolar front eastward and reduces the northward salt transport by the North Atlantic Current waters. This differs again from most coupled models, where the gyre intensification precedes that of the MOC by several years.Support from NSF Grant 82677800 with the Woods Hole Oceanographic Institution, and (to CF) from the Institut universitaire de France and European FP6 project DYNAMITE (contract 003903-GOCE) and (to JD) from the NOAA Office of Hydrologic Development through a scientific appointment administered by UCAR is gratefully acknowledged

    The SAURON project - III. Integral-field absorption-line kinematics of 48 elliptical and lenticular galaxies

    Get PDF
    We present the stellar kinematics of 48 representative elliptical and lenticular galaxies obtained with our custom-built integral-field spectrograph SAURON operating on the William Herschel Telescope. The data were homogeneously processed through a dedicated reduction and analysis pipeline. All resulting SAURON datacubes were spatially binned to a constant minimum signal-to-noise. We have measured the stellar kinematics with an optimized (penalized pixel-fitting) routine which fits the spectra in pixel space, via the use of optimal templates, and prevents the presence of emission lines to affect the measurements. We have thus generated maps of the mean stellar velocity, the velocity dispersion, and the Gauss-Hermite moments h3 and h4 of the line-of-sight velocity distributions. The maps extend to approximately one effective radius. Many objects display kinematic twists, kinematically decoupled components, central stellar disks, and other peculiarities, the nature of which will be discussed in future papers of this series.Comment: 23 pages, 18 figures. Accepted for publication in MNRAS. Version with full resolution images available at http://www.strw.leidenuniv.nl/sauron/papers/emsellem2004_sauron3.pd

    The Neutron star Interior Composition Explorer (NICER): design and development

    Get PDF

    Malaria in Africa: Vector Species' Niche Models and Relative Risk Maps

    Get PDF
    A central theoretical goal of epidemiology is the construction of spatial models of disease prevalence and risk, including maps for the potential spread of infectious disease. We provide three continent-wide maps representing the relative risk of malaria in Africa based on ecological niche models of vector species and risk analysis at a spatial resolution of 1 arc-minute (9 185 275 cells of approximately 4 sq km). Using a maximum entropy method we construct niche models for 10 malaria vector species based on species occurrence records since 1980, 19 climatic variables, altitude, and land cover data (in 14 classes). For seven vectors (Anopheles coustani, A. funestus, A. melas, A. merus, A. moucheti, A. nili, and A. paludis) these are the first published niche models. We predict that Central Africa has poor habitat for both A. arabiensis and A. gambiae, and that A. quadriannulatus and A. arabiensis have restricted habitats in Southern Africa as claimed by field experts in criticism of previous models. The results of the niche models are incorporated into three relative risk models which assume different ecological interactions between vector species. The “additive” model assumes no interaction; the “minimax” model assumes maximum relative risk due to any vector in a cell; and the “competitive exclusion” model assumes the relative risk that arises from the most suitable vector for a cell. All models include variable anthrophilicity of vectors and spatial variation in human population density. Relative risk maps are produced from these models. All models predict that human population density is the critical factor determining malaria risk. Our method of constructing relative risk maps is equally general. We discuss the limits of the relative risk maps reported here, and the additional data that are required for their improvement. The protocol developed here can be used for any other vector-borne disease
    • 

    corecore