
Single amino acid variation underlies species-specific sensitivity 
to amphibian skin-derived opioid-like peptides

Eyal Vardy1, Maria F. Sassano1, Andrew J. Rennekamp2,3, Wesley K. Kroeze1, Philip D. 
Mosier4, Richard B. Westkaemper4, Craig W. Stevens5, Vsevolod Katritch6, Raymond C. 
Stevens6, Randel T. Peterson2,3, and Bryan L. Roth1,7

1Department of Pharmacology, 120 Mason Farm Road, 4072 Genetic Medicine Building, UNC 
Chapel Hill Medical School, Chapel Hill, NC 27514, USA

2Cardiovascular Research Center and Division of Cardiology, Department of Medicine, 
Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 
02129, USA

3Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts, 02142, USA

4Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, 
Richmond, Virginia 23298 USA

5Department of Pharmacology & Physiology, Oklahoma State University-Center for Health 
Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA

6Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 
10550 North Torrey Pines Road, La Jolla, California 92037, USA

Abstract

It has been suggested that the evolution of vertebrate opioid receptors (ORs) follow a vector of 

increased functionality. Here we test this idea comparing human and frog ORs. Interestingly, some 

of the most potent opioid peptides known have been isolated from amphibian skin secretions. Here 

we show that such peptides (dermorphin and deltorphin) are highly potent in the human receptors 

and inactive in frog ORs. The molecular basis for the insensitivity of the frog ORs to these 

peptides was studied using chimeras and molecular modeling. Interestingly, the insensitivity of the 

delta opioid receptor (DOR) to deltorphin was due to variation of a single amino acid– Trp7.35—

which is a leucine in mammalian DORs. Notably, Trp7.35 is completely conserved in all known 

DOR sequences from lamprey, fish and amphibians. The deltorphin-insensitive phenotype was 

verified in fish. Our results provide a molecular explanation for the species selectivity of skin-

derived opioid peptides.
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INTRODUCTION

Opioid receptors (ORs) mediate the analgesic and antinociceptive effects of endogenous 

opioid peptides and exogenous opioid small molecules in vertebrates [1–3]. The three classic 

opioid receptors, designated µ, δ and κ (MOR, DOR and KOR), were originally 

characterized by the pharmacological profiles of their responses to both shared and type-

specific ligands [1]. The genes for these three ORs, along with the related nociceptin 

receptor, occur on separate chromosomes in most known vertebrate genomes [1, 2]. 

Sequence-based studies of ORs have suggested that these four ORs arose via two genome-

wide pre-Mesozoic duplication events [2, 4–7].

Early studies of the analgesic and antinociceptive effects of opioid compounds in 

amphibians and fish provided evidence for the existence of opioid-like receptors in these 

organisms [3, 8–12], although these receptors differed pharmacologically from their 

mammalian orthologs. One of the first lines of evidence for this was derived from studies of 

KOR-like sites in the brain of the edible frog (Rana esculenta), in which it was reported that 

the KOR-like binding sites had higher affinities for MOR- and DOR-specific compounds 

than mammalian KOR receptors [13, 14]. Intriguingly, the degree of stereo-selectivity for 

arylacetamide and benzomorphan-derived ligands was also less at frog KOR than at the 

mammalian receptors [15].

All four opioid receptors have subsequently been cloned from additional amphibian and fish 

species [6, 16–23], and genome sequencing projects have revealed these same receptors in a 

large number of other species. The sequences of the four types of opioid receptors are highly 

conserved among species, with the most striking differences between the mammalian and 

non-mammalian receptors being in the extracellular loop domains [2, 6]—regions 

considered to constitute the “selectivity filter” of opioid receptors [24, 25]. In general, 

pharmacological studies have revealed that opioid receptors from mammals are more 

selective than those from non-mammals, [21–23, 26] leading to the hypothesis that opioid 

receptor type-selectivity exhibits an evolutionary vector of increased selectivity from fish 

and amphibians to mammals [2]. Among the many striking differences between the opioid 

systems of mammals and amphibians is the presence of highly potent endogenous opioid 

peptides (deltorphins [27] and dermorphins [28]) in the skin of many amphibians and 

mollusks [29]. Here we show that, although opioid-like peptides from amphibian epidermal 

secretions are remarkably potent at the human receptors, they do not activate the frog 

receptors. Further, by using human–frog chimeric receptors, site-directed mutagenesis and 

molecular modeling of newly-solved structures of opioid receptor-peptide complexes, we 

established the molecular basis of these differences. Our results predicted that DORs from 

Lamprey, Fish and Amphibian (LFA) sources would be insensitive to deltorphin, and we 

confirmed this prediction by showing that they are inactive in zebrafish in vivo.

Results

Pharmacological comparison of human and frog (Rana pipiens) opioid receptors

In preliminary experiments, we tested the expression levels of three human (hKOR, hMOR, 

hDOR) and three frog (Rana pipiens; rpKOR, rpMOR, rpDOR) opioid receptors via 
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saturation binding assays using 3H-diprenorphine (see Methods for details). All transfected 

receptors displayed high affinity 3H-diprenorphine binding (KD’s ranged from 0.6 to 2.2 

nM), with high expression levels (βmax ranged from 2–8 pmol/mg) (Table 1), facilitating 

the comparison of functional data between species.

We used a previously described Gαi assay [30–34]to characterize the differential selectivity 

profiles of Rana pipiens versus human ORs (Table 2). For these studies, we evaluated the 

agonist potencies and efficacies of 14 agonists at each of the three different ORs from Rana 

pipiens and humans. In most cases when comparing human and frog ORs, agonists 

maintained their type selectivity albeit with lower potencies at the frog receptors. Thus, for 

example, the δ-selective ligand DADLE ([D-Ala2,D-Leu5]-enkephalin) was 90-fold less 

potent at the frog than at the human DOR. Similarly the μ-selective agonist DAMGO ([D-

Ala2,N-MePhe4,Gly-ol]-enkephalin) was 300-fold less potent at the frog than at the human 

MOR. Interestingly, the differences between frog and human receptors were less 

pronounced when naturally occurring mammalian opioid peptides were evaluated. Thus, for 

example, the endomorphins were 20-fold less potent at the frog MOR than at the human 

MOR. Interestingly, whereas all of the tested KOR-specific peptides (dynorphin A, 

dynorphin B and α-neoendorphin) were 10-fold less potent at the frog KOR, the amphibian 

dynorphin xendorphin [35, 36] was equally active at frog and human KORs. Type selectivity 

was mostly maintained in frog relative to human ORs. However, in the case of the synthetic 

peptides DADLE and DAMGO, type selectivity differed between species (see Table 2 for 

details). By contrast, the KOR-selective dynorphins, as well as the small molecule salvinorin 

A, were similarly selective in human and amphibian KORs.

The most pronounced differences between the human and frog receptors were seen with the 

dermorphin and deltorphin peptides, which are secreted in the skin of the tree frog-

Phyllomedusa bicolor. As previously documented, dermorphin is a potent and selective 

human MOR agonist, and deltorphin II and deltorphin C are potent and selective human 

DOR agonists. Deltorphin II and deltorphin C were inactive at the three tested frog ORs (Fig 

2B; Table 2) while dermorphin was an exceedingly weak agonist (Fig 2A; Table 2).

Identification of the molecular determinants of the pharmacological differences between 
frog and human opioid receptors

We next sought to determine the molecular basis for this striking species selectivity. An 

analysis of the sequences of human and frog receptors revealed that, for the most part, the 

major differences between these ORs reside in the extracellular loops and the receptor 

termini [6] (Fig. 1, Supp. Fig. 1). We hypothesized that the functional differences between 

human and frog ORs stem from differences in their corresponding sequences. Therefore, to 

characterize the molecular basis for the pharmacological differences between the frog and 

human MORs and DORs, a series of chimeric receptors was made to produce frog ORs with 

human “inserts” in various transmembrane and extracellular domains (Fig. 1B and 1C; 

Supplementary Table 2), covering most of the differences between the species, except for 

the N- and C- termini. The chimeras were designed to explore the idea that sequences in 

certain regions of the human receptors may be critical for their increased sensitivity 
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compared to their frog homologs. The new chimeras and mutants explored most of the 

differences between human and frog ORs, except for the N- and C- termini.

(a) Mu opioid receptors—Four chimeras (Fig. 1B–1 to 4) were made that swapped 

single stretches of human MOR sequences into the frog MOR. Functional analyses of the 

responses of these four chimeras to endomorphin, dermorphin or DAMGO showed that their 

responses were essentially identical to the wild-type frog MOR. Since the N-terminus of the 

human MOR had been implicated in the binding of opioid peptides [37], we constructed 3 

additional MOR chimeras (Fig. 1B-5 to 7) by “humanizing” the N termini of three 

constructs (residues 1 to 220 of WT rpMOR, rpMOR EL2h and rpMOR EL3h). These 

chimeras, h-rpMOR-WT, h-rpMOR-EL2h and h-rpMOR-EL3h were more responsive to the 

tested peptides than the WT rpMOR (Fig. 2A and Table 3). Moreover, the “humanization” 

of different regions had differential effects on the responses to various peptides – the activity 

of DAMGO, endomorphin 1 and 2 in rpMOR was partially rescued by humanization of the 

N-terminus, and even further enhanced by humanization of EL3h, but not by EL2h (Table 

3). Interestingly, the activity of dermorphin with the chimeric MOR followed a different 

pattern (Table 3 and Fig. 2A); humanization of the N-terminus rescued receptor activation 

by dermorphin, which was slightly enhanced by humanization of EL3 (~2-fold) and 

markedly enhanced by humanization of EL2 (~10-fold). We also examined the affinity of 

DAMGO and dermorphin to these chimeras using a competition binding assay with 

radiolabeled diprenorphine (Fig. 2A and Table 3). Interestingly, the affinity of DAMGO was 

not altered between the frog MOR and the three chimeras (Ki range 100–200 nM), whereas 

the affinity of dermorphin to rpMOR was increased by ~30-fold only in the h-rpMOR EL2h 

chimera, an effect that correlated well with the functional data.

(b) Delta opioid receptors—Five DOR chimeras (Fig. 1C-1 to 5), in which single 

stretches of the frog DOR were “humanized”, were constructed and tested by functional and 

binding studies with peptide ligands (Table S3 and Fig. 2B). Changing TM4 or TM5 from 

the frog sequence to the human sequence (Fig 1C–1 and 3) slightly reduced the activity of 

all four tested peptides, despite the fact that the human wild type receptor is more responsive 

to these ligands than the frog wild type receptor. Changing TM6 from frog to human (Fig. 

1C–4) slightly increased the potencies of all four peptides (Table S3). Changing EL2 from 

frog to human increased the potencies of DADLE, and the deltorphins, but not enkephalin 

(Table S3, Fig. 2B). Changing EL3 from frog to human increased the potencies and the 

affinities of all of the tested peptides.

To further explore the role of the EL3 region in DOR activity, we mutated several residues 

of interest in EL3 and the beginning of TM7 of rpDOR to their corresponding human 

residues. The mutants Met287Leu, Asn294Asp and Tyr296Leu maintained the rpDOR 

phenotype, i.e., they did not respond to deltorphin (data not shown), but the mutant 

Trp301Leu (7.35 in the numbering scheme of Ballesteros and Weinstein [38]) responded to 

deltorphin with substantially increased potency and affinity compared to rpDOR; this 

mutation also partially rescued activation by the other tested peptides (Table S3).

Structural basis of W 7.35 role in deltorphin selectivity—To evaluate the 

importance of position 7.35 in opioid receptors, we tested the effect of the reverse mutation 
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in the human DOR (Leu300Trp). Significantly, the L300W mutation diminished deltorphin 

potency nearly 2000-fold (Fig. 4). Bioinformatic analysis of DORs from multiple species 

reveals an interesting pattern – all of the known sequences of DOR from LFA (Lamprey, 

Fish and Amphibians) contain tryptophan at position 7.35 (Fig. 3A and B).

To elucidate a structural explanation for the role of W7.35 we next performed docking 

studies of deltorphins into the wild-type human DOR in complex with DIPP-NH2 

tetrapeptide (PDB – 4RWD) [39]and to a modeled L3.75W mutation. In this study, DIPP-

NH2 peptide has been found to have weak partial agonist activity at human (but not murine) 

DOR, though this entails only minor changes in the receptor binding pocket as compared 

antagonist naltrindole bound DOR. Therefore, the structure of DOR bound to a DIPP-NH2 

can provide information about the initial interaction between peptide agonists and the 

receptor. Both deltorphin C and deltorphin II are predicted to bind to the human DOR in 

similar binding poses, characterized by several key interactions with the receptor (Figure 

3D). Notably, the N-terminal amino group forms a salt bridge with the Asp128(3.32) side 

chain carboxylate group, while the tyrosine aromatic ring occupies a hydrophobic core 

pocket, with its hydroxyl group making polar interactions with ordered waters found in high 

resolution DOR structures. We note that inclusion of these water molecules in the structural 

model was important for consistently high-scoring docking of the peptide. Residues 1 to 4 of 

the ligand backbone adopt a well-defined turn conformation, which positions the D-Ala2 

and Phe3 side chains in hydrophobic subpockets, and allows the acidic side chain of Asp/

Glu4 to extend back into the pocket to form additional interactions with the N-terminal 

amino group and the Tyr56 side chain. Interestingly, free dynorphin peptides were predicted 

to preferentially adopt a very similar conformation for residues 1 to 4 in extensive energy 

optimizations. The C-terminal residues 5 to 7 are less defined in our docking, with several 

possible low energy conformations predicted for each peptide. Importantly, residue 7.35 is 

positioned at the entrance to the binding cavity and Leu7.35 in the human DOR comprises a 

part of the hydrophobic pocket that accommodates the benzene ring of the peptide Phe3 

[39]. In the frog DOR, however, mutation to a more bulky Trp7.35 side chain results in a 

prominent steric clash between its indole ring and Phe3. Attempts to dock deltorphins to the 

hDOR(Leu7.35Trp) mutant and a frog DOR model resulted in less consistent ligand poses 

and degraded binding scores. Taken together, these modeling results support a prominent 

role for residue 7.35 as a “selectivity filter” in DOR.

Zebrafish are insensitive to deltorphin—The mutagenesis and bioinformatic results 

suggested that the insensitivity of rpDOR to deltorphin was likely to be true of DORs from 

most, if not all, LFA. To test this prediction, an independent model system in which 

deltorphin affinity and potency had never been tested was selected; to that end, we tested the 

effect of DOR agonists on zebrafish swimming behavior. We treated larvae, 7 days post 

fertilization (dpf), with deltorphin or enkephalin peptides for 1 hour and quantified their 

swimming behavior (Fig. 5). When zebrafish were treated with either of the enkephalin 

peptides, we observed dose-dependent decreases in swimming levels. In contrast, the 

deltorphins had no significant effect on zebrafish swimming. We conclude that zebrafish are 

specifically sensitive to the enkephalin peptides and not deltorphins, likely due to the 

presence of W rather than L at position 7.35 of the zebrafish DOR.
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Discussion

The main finding of this paper is that frog-derived opioid peptides show remarkable species-

selectivity which is specified –in the case of DOR—by a single amino acid change which 

has been conserved in all higher vertebrates. Clearly a functional comparison of orthologous 

receptors from different species can facilitate our understanding of the relationship between 

structure and function of these receptors; in addition, such comparisons may help us to 

understand how these receptors evolved, and the pressures that may have been exerted to 

promote such evolution. In the current study, we have verified that all of the frog and human 

receptors were functionally expressed in HEK293-T cells, and were coupled to Gαi, as 

would be predicted on the basis of sequence identity in the intracellular loop regions of 

opioid receptors from frogs and humans. We showed that, in most cases, human opioid 

receptors respond to both naturally occurring and synthetic peptides with higher potencies 

than opioid receptors from Rana pipiens. This is true in all of the examined cases except for 

the Xenopus laevis-derived peptide xendorphin, which demonstrated a comparable KOR-

specific activity in both human and frog KOR, and very low to no activity at MOR and DOR 

receptors. The KOR specificity of xendorphin has been previously demonstrated by 

displacement of a KOR radioligand from rat whole brain membranes [36].

The lower potencies observed for all of the frog ORs (Table 2) are consistent with previous 

reports characterizing other cloned non-mammalian ORs, including those from white 

suckerfish [16] and rough-skinned newt [21]. But in the case of the Xenopus dynorphin, 

xendorphin, we observed that, although frog receptors are not highly activated by 

mammalian peptides, the human receptors may be “compatible” with the amphibian 

peptides. Together, these data support the concept of an ‘evolutionary vector’ that leads 

from receptors with low responsiveness (low potency) in non-mammalian aquatic or 

amphibian vertebrates to those with high responsiveness and selectivity in mammals.

One of the initial motivations for this work was the observation that certain amphibians can 

secrete large quantities of extremely potent psychoactive compounds and peptides from their 

skin without apparent ill effects. It has been proposed that such secretions serve to protect 

against predators in nature [40, 41] and in other cases, it has been shown that the evolution 

of such natural defensive and survival strategies is often accompanied by resistance or 

insensitivity to certain natural materials [42–46]. As we show here, the amphibian opioid 

receptors we tested are insensitive to deltorphin and dermorphin and, in the case of 

deltorphin, this is due mainly to a difference in sequence at a single conserved residue—

leucine (mammalian) vs tryptophan (LFA) at position 7.35. Recent structural studies of 

antagonist-bound human MOR and DOR [30, 47, 48] show that residue 7.35 (Trp318 and 

Leu300, respectively) lies at the entrance to the binding site and is likely to be a part of the 

receptor specificity determinant [30, 47, 49, 50]. The Leu7.35Trp mutation in human DOR 

resulted in decreased affinity for some of the DOR-specific ligands [51], whereas mutations 

of the conserved tryptophan in MOR suggested the key role of this residue for MOR 

specificity [52, 53]. As opioid-like peptides from frog skin are thought to be a natural 

defense mechanism [40, 41], it would thus be advantageous for frogs that these peptides are 

inactive, although one would expect them to activate the receptors of potential frog 

predators.
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A comparison of the structures of human DOR and MOR [30, 47, 49, 50] revealed that there 

are 14 residues within 4 Å of the bound ligand, 11 of which are identical between the two 

receptors; the three differences are at positions (in MOR) Glu229 (in EL2), Lys303 (6.58) 

and Trp318 (7.35), which are Asp, Trp and Leu, respectively, in DOR. The substitution of 

leucine for tryptophan in DOR at position 7.35 is responsible for the binding selectivity both 

of the DOR-selective antagonist naltrindole and the conformationally constrained DOR-

selective peptide agonist [D-Pen2-D-Pen5]enkephalin (DPDPE) [51]. Additionally, the 

Trp318Leu (7.35) mutation increased the affinity of both of these ligands at MOR [54].

Our conformational modeling studies of the hDOR-deltorphin complexes also suggest that 

position 7.35 is the key position in the binding pocket that defines the difference in 

selectivity between human and frog receptors (Fig. 6). In the human DOR, both deltorphin C 

and deltorphin II are predicted to bind with their Phe3 side chain optimally positioned in a 

hydrophobic pocket formed by Leu300(7.35), Val281(6.55) and Trp284(6.58), making a π- 

stacking interaction with the latter. In the frog DOR, the Trp at position 7.35 narrows the 

binding pocket and results in a severe steric clash with Phe3 of the deltorphin peptide that 

precludes optimal ligand binding. Note that the conformation of the mutant Trp7.35 in frog 

DOR is stabilized by contacts with nearby residues, such as a stacking interaction with 

Trp6.58, precluding optimal adjustment of the pocket and hampering accommodation of 

deltorphins. Two other non-conserved residues of DOR, Val197 (Thr in frog) and Arg190 

(Lys in frog) in the ECL2 are in close proximity to the docked deltorphin and may interact 

with the ligand; however, such contacts in the more flexible and solvent-exposed part of the 

ligand are not predicted to significantly contribute to selectivity. This is in agreement with 

the observation that the Leu7.35Trp mutation in frog DOR almost completely rescues 

deltorphin binding, while the opposite mutation in the human receptor nearly eliminates 

deltorphin binding.

The molecular basis for the “species selectivity” of MOR-specific opioid like peptides from 

frog skin was also studied using chimeric receptors. The MOR-specific peptides tested in the 

current study were consistently more potent at the human than at the frog MOR. The 

sequences of the human and frog MORs differ in four regions, excluding the N- and C-

termini. In studies using chimeric receptors, there was little or no effect of replacement of 

regions of the frog MOR with the human sequence, unless the N-terminus of the frog MOR 

was also replaced by the human sequence (Fig. 1B 5–7). This was not surprising, since the 

N-termini of these two receptors differ markedly, and since the N-terminus of MOR has 

been shown to be critical for ligand binding [55]. Once the N-termini had been swapped, the 

results showed that the human EL3 was important for receptor activation by all of the 

studied peptides (Table 3), and that the human EL2 had only a small effect on activation, 

except for dermorphin (Table 3 and Fig. 2A). Thus EL2, along with the N-terminus, may be 

considered to be a ‘specificity determinant’ for dermorphin at MOR. The binding of 

DAMGO and dermorphin to the rpMOR chimeras was well correlated with the response of 

the chimeric receptors in the functional assays; however, there is a discrepancy between the 

binding and function of DAMGO and dermorphin in wild type rpMOR. DAMGO and 

dermorphin are at least 100-fold less potent in rpMOR than in any of the h-rpMOR 

chimeras, but both peptides bind to rpMOR with affinity that is only slightly lower than that 

of h-rpMOR-WT and h-rpMOR-EL3h (Fig. 2A). This phenomenon cannot be attributed to 
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low expression levels, since we have established comparable expression levels of human and 

frog receptors in HEK293 T cells (Table 1). It is conceivable that the N-terminus of MOR is 

involved in signaling or trafficking of the receptor, thus resulting in lower apparent receptor 

activity. The data presented here suggest that the low response of rpMOR to dermorphin and 

other peptides originates in the N-terminal region and in EL2.

The functional and binding data of the frog DOR and its humanized variants is more 

internally consistent than in the case of MOR, i.e., a lower potency is reflected in a lower 

binding affinity. In this case, we discovered that the EL3 of the frog DOR has an important 

role in its “deltorphin insensitive” phenotype. Further analysis led to the discovery that 

Trp301(7.35) of the frog DOR is the critical residue for insensitivity to deltorphin (Fig. 2B, 

Table 3). This notion was further supported by an analysis of the reverse mutation in the 

human receptor, Leu300Trp. The data in Figs. 2B and 3C demonstrate that Leu300 (7.35) is 

a critical residue for activation of hDOR by DOR-specific agonists, especially in the case of 

the Phyllomedusa-derived peptide deltorphin (Fig. 4). Phylogenetic analysis of DOR 

orthologs revealed that all of the available sequences from LFA contain a tryptophan at 

position 7.35 (Fig. 3A and B). Together, these data lead to the prediction that LFA are 

deltorphin-insensitive. This distinct functional difference between DORs from terrestrial 

vertebrates and non-mammalian aquatic vertebrates and amphibians (LFA) leads to a 

hypothesis that the increased sensitivity and selectivity of DOR have evolved, and been 

maintained, after divergence of amphibians and mammalians.

To test this “aquatic deltorphin insensitivity” hypothesis, we chose the zebrafish model 

system as an independent model; unlike enkephalins, deltorphins did not have any effect in 

the zebrafish swimming assay (Fig. 5). It is important to note that binding assays done with 

Rana pipiens tissue demonstrated that the affinities of deltorphin and dermorphin to ORs in 

the brains and spinal cord are very low, (30–80 μM) [56, 57] and, although these peptides 

have been suggested to have some in-vivo effects in Rana pipiens [58], it seems unlikely that 

these results are due to interactions with opioid receptors as they do not bind to them with a 

pharmacologically relevant affinity.

The skin secretions of frogs, toads and other amphibians contain a multitude of psychoactive 

compounds to which they may not be sensitive. Here this concept is demonstrated for opioid 

peptides, and it may be the case for other psychoactive alkaloids and peptides secreted by 

amphibians. The skin secretions of the toad Bufo alvarius contain, among other substances, 

the psychoactive compounds 5-Me-DMT and 5-OH-DMT; these compounds primarily 

target serotonin receptors, and they can generate different serotonin-like effects, including 

hallucinations [59]. Bombesin, bradykinin and tachykinin peptides are also found in the skin 

secretions of amphibians [41], and we hypothesize that the amphibian orthologs of the 

receptors for these compounds are likely to be insensitive to them. We are currently testing 

this hypothesis with a large number of other amphibian GPCR-skin secretants to determine 

if there is a generalized mechanism for this insensitivity related to differential receptor 

sensitivity.

It is interesting to consider the evolutionary advantages of these systems. Thus, for 

evolutionary success, the molecular structure of toxin target sites (e.g., receptors) should be 
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conserved in a phylogenetically wide spectrum of taxa [45]. Toxin inactivation or receptor 

insensitivity seems to be related to the development of such poisons. How ORs and opioid-

like peptides might have evolved in frogs remains a matter for speculation, although our data 

suggest that FLA maintained the deltorphin insensitive phenotype (Trp at position 7.35) 

even though there is no evidence that they secrete or come in contact with deltorphins in 

their natural habitats [60]. Phyllomedusa spp. (the source of the skin peptides) are 

considered by amphibian biologists the newest frog species [61, 62], suggesting that these 

peptides are a more recent evolutionary trait. Together these data suggest that the lower type 

selectivity hypothesized for opioid receptors in FLA, might have been important for the 

ability of later amphibian species to develop the highly potent opioid like peptides in their 

skin secretions.

Significance

Comparative pharmacology is useful for exploring questions related to structure function 

relationship and evolutionary mechanisms. Profound pharmacological distinctions along 

with a well-defined sequence differences between human and frog receptors allowed the 

identification of the molecular basis for an interesting evolutionary phenomena. It has been 

previously suggested that the evolution of vertebrate opioid receptors (ORs) followed a 

vector of increasing type selectivity and support this idea and show that as general rule 

opioid peptides activate human receptors to a higher degree than the frog receptors and the 

tested peptides exhibited increased type selectivity in the human receptors relative to the 

frog receptors. Interestingly, some of the most potent opioid peptides, known, have been 

isolated from amphibian skin secretions. Here we show that such peptides (dermorphin and 

deltorphin), while highly potent in the human receptors and inactive in frog ORs. The 

molecular basis for the insensitivity of the frog ORs to these peptides was studied using 

chimeras and molecular modeling. While the molecular mechanism for the insensitivity was 

not completely resolved due to its complexity, the delta opioid receptor (DOR) insensitivity 

to deltorphin was shown to be due to variation of a single amino acid– Trp7.35—which is a 

Leu in mammalian DORs. Notably, Trp7.35 is completely conserved in all known DOR 

sequences from lamprey, fish and amphibians. The deltorphin-insensitive phenotype was 

verified in zebra fish. Our results provide a molecular explanation for the species selectivity 

of skin-derived opioid peptides and raise an interesting discussion on the potential part that 

the low selectivity of frog ORs might have had in the development of such peptides.

EXPERIMENTAL PROCEDURES

Cell Culture and Transfection

Human embryonic kidney (HEK) 293T cells were maintained in Dulbecco’s modified 

Eagle’s medium (DMEM; Corning) supplemented with 10% fetal bovine serum, 10 U/mL 

penicillin and 10 μg/mL streptomycin (Gibco). The cells were grown in a humidified 

incubator in the presence of 5% CO2 at 37 °C. Transient transfection (48 h) of wild-type, 

chimeric, and mutant receptor cDNAs was performed in 15-cm tissue culture plates using an 

optimized calcium phosphate method [63].
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Construction of Chimeric and Mutant Receptors

Human opioid receptor cDNAs in the mammalian expression vector pcDNA3.1(+) 

(Invitrogen) were obtained from the UMR cDNA Resource Center (www.cdna.org). Opioid 

receptors from Rana pipiens had previously been subcloned into the same vector [6]. Site-

directed mutagenesis was done using the QuikChange II® mutagenesis kit (Agilent) 

according to the manufacturer’s instructions, and all mutations were confirmed by full-

length automated DNA sequencing (Eton Bioscience, Durham, NC).

Generation of inter-species MOR and DOR chimeras was done using a two-step overlap 

PCR method, as previously described [64], and as diagrammed in Supplementary Fig. 2. The 

sequences of all primers used are given in Supplementary Table 1. A total of 5 DOR 

chimeras (Fig. 1C) and 7 MOR chimeras (Fig. 1B) was made by “humanizing” regions of 

the frog receptors (i.e., replacing stretches of residues from the frog receptors with their 

human counterparts).

In vitro characterization of OR activation

Radioligand Binding Assay—Radioligand binding assays were performed as previously 

detailed [65] using 3H-diprenorphine (Perkin Elmer) for saturation binding assays (10–0.1 

nM), with 10 μM unlabeled naltrexone (Sigma) to determine nonspecific binding.

Functional assay—Inhibition of cAMP production was measured using the genetically 

encoded cAMP biosensor, Glosensor-22F (Promega) as previously described [66].

Modeling of DOR-deltorphin interactions

Docking of opioid peptides was performed with the hDOR structure recently solved in 

complex with DIPP-NH2 peptide solved at 2.5 Å resolution (PDB: 4RWD) [39]. The 

receptor model was protonated and prepared using an ICM docking pipeline. Three models 

were tested, one with all 23 water molecules retained from the crystal structure, one without 

waters, and one with only the three water molecules mediating ligand interactions in hDOR-

DIPP-NH2 retained. These three waters were also found to be conserved among the 

structures of different opioid receptor types.

Fully flexible models of the heptapeptides deltorphin C (Tyr-D-Ala-Phe-Asp-Val-Val-Gly-

NH2) and deltorphin II (Tyr-D-Ala-Phe-Glu-Val-Val-Gly-NH2) were docked into the hDOR 

model using the ICM energy-based docking algorithm, which takes advantage of the internal 

molecular coordinates of the ligand. A settings of thoroughness=30 was used to ensure 

exhaustive sampling of the peptide conformational space within the binding pocket. A large 

docking box (25×25×25 Å) was used to ensure that it completely covers the peptide binding 

pocket and the extracellular entrance of the receptor.

Ligand poses with the best binding scores were clustered and further analyzed using all atom 

optimization with side chain flexibility in the ligand binding pocket. Final energy-based 

binding scores were calculated using the ICM scoring algorithm. The mutation Leu7.35Trp 

was introduced by replacing the Leu7.35 side chain with the Trp side chain in ICM, 

followed by thorough energy-based optimization of the adjacent residues. The peptides were 
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docked in the mutated receptor, and binding scores calculated. In addition, the 

conformational preferences of the free deltorphin peptides in solvent were studied using 

exhaustive sampling of their rotamers, and the resulting low-energy conformations were 

compared to the docked deltorphins.

In vivo activity of DOR agonists in zebrafish

Aquaculture—We collected fertilized eggs from group matings of Ekkwill strain zebrafish 

(Ekkwill Waterlife Resources, Ruskin, FL). Embryos were raised in HEPES (10 mM, 

pH7.2) buffered E3 medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2 and 0.33 mM 

MgSO4) on a normal 14/10 h on/off light cycle at 28 °C. At 3 days post-fertilization (dpf), 

chorion debris was removed and larvae were transferred into fresh medium until 7 dpf. At 7 

dpf, larvae were counted and manually pipetted, 10 larvae per well, into clear 96-well, U-

bottom plates (250μl/well) in the same medium.

Peptide treatment—All peptides were dissolved in DMSO, diluted to a 100X 

concentration and added directly to zebrafish medium in 96-well plates (2.5 μl in 250 μl). 

Wells were mixed and allowed to incubate for 1 h at 28 °C in ambient light prior to 

behavioral evaluation. The final DMSO concentration was 1%.

Swimming Assay—96-well plates were loaded into a ZebraBox containing a computer-

controlled light box and a video camera with an infrared filter (ViewPoint Life Sciences, 

Montreal, Quebec, Canada). Infrared light was used to illuminate the chamber and the 

temperature was maintained at 28 °C for the duration of the experiment. White light 

stimulation was automated using ZebraLab software (ViewPoint Life Sciences) as follows: 

dark for minutes 1, 3, 5 and 7; light for minutes 2, 4 and 6. At this age, darkness stimulates 

fish swimming [67]. Locomotor activity was recorded during the dark phases by the infrared 

camera using the ZebraLab Videotrack quantization mode at 30 frames/second. 96 evenly-

spaced regions of equal size were drawn around each well of the assay plate using the 

Viewpoint software. The software tracks the change in pixel intensity for each region over 

time producing a motion index, which correlates with the overall amount of motion in the 

well. Each video was saved for review and the data were further analyzed using custom R 

scripts. We used a Student’s t-test (2-tailed, unpaired, unequal variance) to analyze motion 

index values. An effect was considered significant if p<0.05. All zebrafish protocols were 

approved by the Institutional Animal Care and Use Committee at Massachusetts General 

Hospital.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

1. Comparison of frog and human opioid receptors show distinct pharmacology

2. Frog-derived opioid peptides secreted are potent in human but inactive in frogs

3. The molecular basis for δ-receptor species selectivity due to a single amino acid

4. The structural basis for this selectivity filter is elucidated
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Figure 1. Sequence divergence in ORs from frogs and humans
A- Crystal structures of the human KOR DOR and MOR. Transmembrane domains are 

colored using a color gradient from red (TM1) to blue (TM7), yellow regions are the 

receptor regions that differ between human and frog receptors (for more details, see 

sequence alignments in Fig. S1). B and C- Chimeras used in this study. rpDOR chimeras 

(B1–5) and rpMOR chimeras (C1–7). The chimeras were constructed by replacing regions 

of rpOR (white with grey outline) with their human corresponding sequences (black).
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Figure 2. Molecular basis for dermorphin and deltorphin insensitivity in rpORs
Inhibition of isoproterenol (300 nM) induced cAMP response and [3H]-diprenorphine 

competition in MOR variants by dermorphin and DAMGO (hMOR ●, rpMOR ■, h-rpMOR 

WT ▲, h-rpMOR – EL2h ▼, h-rpMOR – EL3h ◆) (A) and in DOR variants by deltorphin 

and DADLE (hDOR ■, rpDOR ●, rpDOR EL2h ●, rpDOR – EL2h ▲, rpDOR – EL3h ●) 

(B).
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Figure 3. Position 7.35 in DOR is the selectivity filter
A- comparison of DOR EL3-TM7 sequence from different species highlighting position 

7.35 with yellow (L) and green (W). B- Phylogenetic tree of vertebrate delta opioid 

receptors (full sequence) DOR from terrestrial vertebrates (yellow background) contains 

leucine at position 7.35 and DOR from non-terrestrial vertebrates (green background) 

contains tryptophan at position 7.35. C-The effect of tryptophan at position 7.35 in human 

DOR. Inhibition of cAMP response by three peptides in cells expressing hDOR or hDOR 

Leu300Trp. D-Zebrafish are sensitive to enkephalins but not deltorphins. Zebrafish larvae (7 

dpf) were treated with increasing concentrations of DOR peptide ligands for 1 h and then 

assayed for normal swimming activity. Results represent average motion ±SEM from 12 

replicate wells of 10 fish each, normalized to the vehicle (DMSO) control. Statistical 

analysis was performed using Student’s t-test (2-tailed, unpaired, unequal variance) 

significance was determined as follows: *p<0.05; **p<0.01.
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Figure 4. Structural model of Deltorphin and DOR
A- Surface representation of the binding pocket (cyan) of the delta opioid receptor and the 

docked position of Deltorphin C (orange). B and C –A Trp at position 7.35 of the hDOR 

Leu300Trp mutant protrudes into the binding pocket and narrows the entrance to the binding 

pocket. Deltorphin C (orange carbon atoms) and deltorphin II (yellow carbon atoms), 

docked into hDOR structure are shown in stick presentation. The Trp7.35 side chain in 

rpDOR (shown with magenta carbons in both stick and transparent sphere presentation) 

clashes with deltorphin peptides and can occlude their binding.
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