8 research outputs found
Dense sampling of bird diversity increases power of comparative genomics
Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity(1-4). Sparse taxon sampling has previously been proposed to confound phylogenetic inference(5), and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species. A dataset of the genomes of 363 species from the Bird 10,000 Genomes Project shows increased power to detect shared and lineage-specific variation, demonstrating the importance of phylogenetically diverse taxon sampling in whole-genome sequencing.Peer reviewe
The wolf reference genome sequence (Canis lupus lupus) and its implications for Canis spp. population genomics
Background: An increasing number of studies are addressing the evolutionary genomics of dog domestication, principally through resequencing dog, wolf and related canid genomes. There is, however, only one de novo assembled canid genome currently available against which to map such data - that of a boxer dog (Canis lupus familiaris). We generated the first de novo wolf genome (Canis lupus lupus) as an additional choice of reference, and explored what implications may arise when previously published dog and wolf resequencing data are remapped to this reference. Results: Reassuringly, we find that regardless of the reference genome choice, most evolutionary genomic analyses yield qualitatively similar results, including those exploring the structure between the wolves and dogs using admixture and principal component analysis. However, we do observe differences in the genomic coverage of re-mapped samples, the number of variants discovered, and heterozygosity estimates of the samples. Conclusion: In conclusion, the choice of reference is dictated by the aims of the study being undertaken; if the study focuses on the differences between the different dog breeds or the fine structure among dogs, then using the boxer reference genome is appropriate, but if the aim of the study is to look at the variation within wolves and their relationships to dogs, then there are clear benefits to using the de novo assembled wolf reference genome.Carlsbergfondet grant CF14–0995 and Marie Curie grant 655732-Wherewolf to SG, Danish National Research Foundation grant DNRF94, Lundbeckfonden grant R52–5062 and ERC Consolidator Grant (681396-Extinction Genomics) (to MTPG) and the Swedish Research Council (to LD). LFKK is supported by an FPI fellowship associated to BFU2014–55090-P (FEDER). TMB is supported by MINECO BFU2014–55090-P (FEDER), Fundacio Zoo Barcelona and Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya. GL was supported by a European Research Council grant (ERC-2013-StG-337574-UNDEAD) and Natural Environmental Research Council grants (NE/K005243/1 and NE/K003259/1)