10 research outputs found

    Non-Invasive Detection of a Small Number of Bioluminescent Cancer Cells In Vivo

    Get PDF
    Early detection of tumors can significantly improve the outcome of tumor treatment. One of the most frequently asked questions in cancer imaging is how many cells can be detected non-invasively in a live animal. Although many factors limit such detection, increasing the light emission from cells is one of the most effective ways of overcoming these limitations. Here, we describe development and utilization of a lentiviral vector containing enhanced firefly luciferase (luc2) gene. The resulting single cell clones of the mouse mammary gland tumor (4T1-luc2) showed stable light emission in the range of 10,000 photons/sec/cell. In some cases individual 4T1-luc2 cells inserted under the skin of a nu/nu mouse could be detected non-invasively using a cooled CCD camera in some cases. In addition, we showed that only few cells are needed to develop tumors in these mice and tumor progression can be monitored right after the cells are implanted. Significantly higher luciferase activity in these cells allowed us to detect micrometastases in both, syngeneic Balb/c and nu/nu mice

    Evaluation of the mTOR inhibitor, everolimus, in combination with cytotoxic anti-tumor agents using human tumor models in vitro and in vivo

    No full text
    The aim was to determine the potential of the allosteric mammalian target of rapamycin inhibitor, everolimus, to act in combination with cytotoxic anticancer compounds in vitro and in vivo. A concomitant combination in vitro showed no evidence of antagonism, but enhanced the antiproliferative effects (additive to synergistic) with cisplatin, doxorubicin, 5-fluorouracil, gemcitabine, paclitaxel, and patupilone. Everolimus (1-5 mg/kg/d orally) was evaluated for antitumor activity in vivo alone or in combination with suboptimal cytotoxic doses using athymic nude mice bearing subcutaneous human H-596 lung, KB-31 cervical, or HCT-116 colon tumor xenografts. Everolimus monotherapy was very well tolerated and caused inhibition of tumor growth, rather than regression, and this was associated with a dose-dependent decline in tumor pS6 levels, a key downstream protein of mammalian target of rapamycin. At the doses used, the cytotoxics inhibited tumor growth and caused tolerable body-weight loss. Concomitant combinations of cisplatin, doxorubicin, paclitaxel, or patupilone with everolimus produced cooperative antitumor effects, in some cases producing regressions without clinically significant increases in toxicity. In contrast, combinations with gemcitabine and 5-fluorouracil were less well tolerated. Alternative administration schedules were tested for cisplatin, gemcitabine, or paclitaxel combined with everolimus: these did not dramatically affect cisplatin or gemcitabine activity or tolerability but were antagonistic for paclitaxel. Everolimus showed promising maintenance activity after treatment with doxorubicin or paclitaxel ceased. Overall, the results confirm that everolimus is an effective, well-tolerated suppressor of experimental human tumor growth, and although it did not show strong potentiation of efficacy, antitumor activity in vivo was increased without marked increases in toxicity, supporting clinical use of everolimus as a partner for conventional cytotoxics

    Selective growth inhibition of tumor cells by a novel histone deacetylase inhibitor, NVP-LAQ824.

    No full text
    We have synthesized a histone deacetylase inhibitor, NVP-LAQ824, a cinnamic hydroxamic acid, that inhibited in vitro enzymatic activities and transcriptionally activated the p21 promoter in reporter gene assays. NVP-LAQ824 selectively inhibited growth of cancer cell lines at submicromolar levels after 48-72 h of exposure, whereas higher concentrations and longer exposure times were required to retard the growth of normal dermal human fibroblasts. Flow cytometry studies revealed that both tumor and normal cells arrested in the G(2)-M phase of the cell cycle after compound treatment. However, an increased sub-G(1) population at 48 h (reminiscent of apoptotic cells) was observed only in the cancer cell line. Annexin V staining data supported our hypothesis that NVP-LAQ824 induced apoptosis in tumor and transformed cells but not in normal cells. Western blotting experiments showed an increased histone H3 and H4 acetylation level in NVP-LAQ824-treated cancer cells, suggesting that the likely in vivo target of NVP-LAQ824 was histone deacetylase(s). Finally, NVP-LAQ824 exhibited antitumor effects in a xenograft animal model. Together, our data indicated that the activity of NVP-LAQ824 was consistent with its intended mechanism of action. This novel histone deacetylase inhibitor is currently in clinical trials as an anticancer agent

    Bioluminescent imaging of Cdk2 inhibition in vivo

    No full text
    Many proteins and pathways of pharmaceutical interest impinge on ubiquitin ligases or their substrates. The cyclin-dependent kinase (Cdk) inhibitor p27, for example, is polyubiquitylated in a cell cycle−dependent manner by a ubiquitin ligase complex containing the F-box protein Skp2. Regulated turnover of p27 is due, at least partly, to its phosphorylation by Cdk2 on threonine 187, which generates a Skp2-binding site. We made a p27-luciferase (p27Luc) fusion protein and show here that its abundance, like that of p27, is regulated by Skp2 in a cell cycle−dependent manner. As predicted, p27Luc levels increased after blocking Cdk2 activity with inhibitory proteins, peptides or small interfering RNA (siRNA). Accumulation of p27Luc in response to Cdk2 inhibitory drugs (flavopiridol and R-roscovitine) was demonstrable in human tumor cells in vivo using noninvasive bioluminescent imaging. In theory, the approach described here could be used to develop bioluminescent reporters for any drug target that directly or indirectly affects the turnover of a ubiquitin ligase substrate

    Rare GABRA3 variants are associated with epileptic seizures, encephalopathy and dysmorphic features

    No full text
    Genetic epilepsies are caused by mutations in a range of different genes, many of them encoding ion channels, receptors or transporters. While the number of detected variants and genes increased dramatically in the recent years, pleiotropic effects have also been recognized, revealing that clinical syndromes with various degrees of severity arise from a single gene, a single mutation, or from different mutations showing similar functional defects. Accordingly, several genes coding for GABAA receptor subunits have been linked to a spectrum of benign to severe epileptic disorders and it was shown that a loss of function presents the major correlated pathomechanism. Here, we identified six variants in GABRA3 encoding the \uce\ub13-subunit of the GABAA receptor. This gene is located on chromosome Xq28 and has not been previously associated with human disease. Five missense variants and one microduplication were detected in four families and two sporadic cases presenting with a range of epileptic seizure types, a varying degree of intellectual disability and developmental delay, sometimes with dysmorphic features or nystagmus. The variants co-segregated mostly but not completely with the phenotype in the families, indicating in some cases incomplete penetrance, involvement of other genes, or presence of phenocopies. Overall, males were more severely affected and there were three asymptomatic female mutation carriers compared to only one male without a clinical phenotype. X-chromosome inactivation studies could not explain the phenotypic variability in females. Three detected missense variants are localized in the extracellular GABA-binding NH2-terminus, one in the M2-M3 linker and one in the M4 transmembrane segment of the \uce\ub13-subunit. Functional studies in Xenopus laevis oocytes revealed a variable but significant reduction of GABA-evoked anion currents for all mutants compared to wild-type receptors. The degree of current reduction correlated partially with the phenotype. The microduplication disrupted GABRA3 expression in fibroblasts of the affected patient. In summary, our results reveal that rare loss-of-function variants in GABRA3 increase the risk for a varying combination of epilepsy, intellectual disability/developmental delay and dysmorphic features, presenting in some pedigrees with an X-linked inheritance pattern

    Topoisomerase II as a target for anticancer drugs: When enzymes stop being nice

    No full text
    corecore