14 research outputs found
A near-infrared tip-tilt sensor for the Keck I laser guide star adaptive optics system
The sky coverage and performance of laser guide star (LGS) adaptive optics (AO) systems is limited by the natural guide star (NGS) used for low order correction. This limitation can be dramatically reduced by measuring the tip and tilt of the NGS in the near-infrared where the NGS is partially corrected by the LGS AO system and where stars are generally several magnitudes brighter than at visible wavelengths. We present the design of a near-infrared tip-tilt sensor that has recently been integrated with the Keck I telescope’s LGS AO system along with some initial on-sky results. The implementation involved modifications to the AO bench, real-time control system, and higher level controls and operations software that will also be discussed. The tip-tilt sensor is a H2RG-based near-infrared camera with 0.05 arc second pixels. Low noise at high sample rates is achieved by only reading a small region of interest, from 2×2 to 16×16 pixels, centered on an NGS anywhere in the 100 arc second diameter field. The sensor operates at either Ks or H-band using light reflected by a choice of dichroic beamsplitters located in front of the OSIRIS integral field spectrograph
The development of HISPEC for Keck and MODHIS for TMT: science cases and predicted sensitivities
HISPEC is a new, high-resolution near-infrared spectrograph being designed
for the W.M. Keck II telescope. By offering single-shot, R=100,000 between 0.98
- 2.5 um, HISPEC will enable spectroscopy of transiting and non-transiting
exoplanets in close orbits, direct high-contrast detection and spectroscopy of
spatially separated substellar companions, and exoplanet dynamical mass and
orbit measurements using precision radial velocity monitoring calibrated with a
suite of state-of-the-art absolute and relative wavelength references. MODHIS
is the counterpart to HISPEC for the Thirty Meter Telescope and is being
developed in parallel with similar scientific goals. In this proceeding, we
provide a brief overview of the current design of both instruments, and the
requirements for the two spectrographs as guided by the scientific goals for
each. We then outline the current science case for HISPEC and MODHIS, with
focuses on the science enabled for exoplanet discovery and characterization. We
also provide updated sensitivity curves for both instruments, in terms of both
signal-to-noise ratio and predicted radial velocity precision.Comment: 25 pages, 9 figures. To appear in the Proceedings of SPIE: Techniques
and Instrumentation for Detection of Exoplanets XI, vol. 12680 (2023
Recommended from our members
Innovations and advances in instrumentation at the W. M. Keck Observatory, vol. III
Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.
Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes
