83 research outputs found
Crowdsourcing as a screening tool to detect clinical features of glaucomatous optic neuropathy from digital photography.
AIM: Crowdsourcing is the process of simplifying and outsourcing numerous tasks to many untrained individuals. Our aim was to assess the performance and repeatability of crowdsourcing in the classification of normal and glaucomatous discs from optic disc images. METHODS: Optic disc images (N = 127) with pre-determined disease status were selected by consensus agreement from grading experts from a large cohort study. After reading brief illustrative instructions, we requested that knowledge workers (KWs) from a crowdsourcing platform (Amazon MTurk) classified each image as normal or abnormal. Each image was classified 20 times by different KWs. Two study designs were examined to assess the effect of varying KW experience and both study designs were conducted twice for consistency. Performance was assessed by comparing the sensitivity, specificity and area under the receiver operating characteristic curve (AUC). RESULTS: Overall, 2,540 classifications were received in under 24 hours at minimal cost. The sensitivity ranged between 83-88% across both trials and study designs, however the specificity was poor, ranging between 35-43%. In trial 1, the highest AUC (95%CI) was 0.64(0.62-0.66) and in trial 2 it was 0.63(0.61-0.65). There were no significant differences between study design or trials conducted. CONCLUSIONS: Crowdsourcing represents a cost-effective method of image analysis which demonstrates good repeatability and a high sensitivity. Optimisation of variables such as reward schemes, mode of image presentation, expanded response options and incorporation of training modules should be examined to determine their effect on the accuracy and reliability of this technique in retinal image analysis
The incidence of diabetes mellitus and diabetic retinopathy in a population-based cohort study of people age 50Â years and over in Nakuru, Kenya.
BACKGROUND: The epidemic rise of diabetes carries major negative public health and economic consequences particularly for low and middle-income countries. The highest predicted percentage growth in diabetes is in the sub-Saharan Africa (SSA) region where to date there has been no data on the incidence of diabetic retinopathy from population-based cohort studies and minimal data on incident diabetes. The primary aims of this study were to estimate the cumulative six-year incidence of Diabetes Mellitus (DM) and DR (Diabetic Retinopathy), respectively, among people aged ≥50 years in Kenya. METHODS: Random cluster sampling with probability proportionate to size were used to select a representative cross-sectional sample of adults aged ≥50 years in 2007-8 in Nakuru District, Kenya. A six-year follow-up was undertaken in 2013-14. On both occasions a comprehensive ophthalmic examination was performed including LogMAR visual acuity, digital retinal photography and independent grading of images. Data were collected on general health and risk factors. The primary outcomes were the incidence of diabetes mellitus and the incidence of diabetic retinopathy, which were calculated by dividing the number of events identified at 6-year follow-up by the number of people at risk at the beginning of follow-up. Age-adjusted risk ratios of the outcomes (DM and DR respectively) were estimated for each covariate using a Poisson regression model with robust error variance to allow for the clustered design and including inverse-probability weighting. RESULTS: At baseline, 4414 participants aged ≥50 years underwent complete examination. Of the 4104 non-diabetic participants, 2059 were followed-up at six-years (50 · 2%). The cumulative incidence of DM was estimated at 61 · 0 per 1000 (95% CI: 50 · 3-73 · 7) in people aged ≥50 years. The cumulative incidence of DR in the sample population was estimated at 15 · 8 per 1000 (95% CI: 9 · 5-26 · 3) among those without DM at baseline, and 224 · 7 per 1000 (116.9-388.2) among participants with known DM at baseline. A multivariable risk factor analysis demonstrated increasing age and higher body mass index to be associated with incident DM. DR incidence was strongly associated with increasing age, and with higher BMI, urban dwelling and higher socioeconomic status. CONCLUSIONS: Diabetes Mellitus is a growing public health concern with a major complication of diabetic retinopathy. In a population of 1 · 6 million, of whom 150,000 are ≥50 years, we estimated that 1650 people aged ≥50 develop DM per year, and 450 develop DR. Strengthening of health systems is necessary to reduce incident diabetes and its complications in this and similar settings
Associations with photoreceptor thickness measures in the UK Biobank.
Spectral-domain OCT (SD-OCT) provides high resolution images enabling identification of individual retinal layers. We included 32,923 participants aged 40-69 years old from UK Biobank. Questionnaires, physical examination, and eye examination including SD-OCT imaging were performed. SD OCT measured photoreceptor layer thickness includes photoreceptor layer thickness: inner nuclear layer-retinal pigment epithelium (INL-RPE) and the specific sublayers of the photoreceptor: inner nuclear layer-external limiting membrane (INL-ELM); external limiting membrane-inner segment outer segment (ELM-ISOS); and inner segment outer segment-retinal pigment epithelium (ISOS-RPE). In multivariate regression models, the total average INL-RPE was observed to be thinner in older aged, females, Black ethnicity, smokers, participants with higher systolic blood pressure, more negative refractive error, lower IOPcc and lower corneal hysteresis. The overall INL-ELM, ELM-ISOS and ISOS-RPE thickness was significantly associated with sex and race. Total average of INL-ELM thickness was additionally associated with age and refractive error, while ELM-ISOS was additionally associated with age, smoking status, SBP and refractive error; and ISOS-RPE was additionally associated with smoking status, IOPcc and corneal hysteresis. Hence, we found novel associations of ethnicity, smoking, systolic blood pressure, refraction, IOPcc and corneal hysteresis with photoreceptor thickness
Identifying beliefs underlying pre-drivers’ intentions to take risks: an application of the theory of planned behaviour
Novice motorists are at high crash risk during the first few months of driving. Risky behaviours such as speeding and driving while distracted are well-documented contributors to crash risk during this period. To reduce this public health burden, effective road safety interventions need to target the pre-driving period. We use the Theory of Planned Behaviour (TPB) to identify the pre-driver beliefs underlying intentions to drive over the speed limit (N = 77), and while over the legal alcohol limit (N = 72), talking on a hand-held mobile phone (N = 77) and feeling very tired (N = 68). The TPB explained between 41% and 69% of the variance in intentions to perform these behaviours. Attitudes were strong predictors of intentions for all behaviours. Subjective norms and perceived behavioural control were significant, though weaker, independent predictors of speeding and mobile phone use. Behavioural beliefs underlying these attitudes could be separated into those reflecting perceived disadvantages (e.g., speeding increases my risk of crash) and advantages (e.g., speeding gives me a thrill). Interventions that can make these beliefs safer in pre-drivers may reduce crash risk once independent driving has begun
High-throughput automated scoring of Ki67 in breast cancer tissue microarrays from the Breast Cancer Association Consortium.
Automated methods are needed to facilitate high-throughput and reproducible scoring of Ki67 and other markers in breast cancer tissue microarrays (TMAs) in large-scale studies. To address this need, we developed an automated protocol for Ki67 scoring and evaluated its performance in studies from the Breast Cancer Association Consortium. We utilized 166 TMAs containing 16,953 tumour cores representing 9,059 breast cancer cases, from 13 studies, with information on other clinical and pathological characteristics. TMAs were stained for Ki67 using standard immunohistochemical procedures, and scanned and digitized using the Ariol system. An automated algorithm was developed for the scoring of Ki67, and scores were compared to computer assisted visual (CAV) scores in a subset of 15 TMAs in a training set. We also assessed the correlation between automated Ki67 scores and other clinical and pathological characteristics. Overall, we observed good discriminatory accuracy (AUC = 85%) and good agreement (kappa = 0.64) between the automated and CAV scoring methods in the training set. The performance of the automated method varied by TMA (kappa range= 0.37-0.87) and study (kappa range = 0.39-0.69). The automated method performed better in satisfactory cores (kappa = 0.68) than suboptimal (kappa = 0.51) cores (p-value for comparison = 0.005); and among cores with higher total nuclei counted by the machine (4,000-4,500 cells: kappa = 0.78) than those with lower counts (50-500 cells: kappa = 0.41; p-value = 0.010). Among the 9,059 cases in this study, the correlations between automated Ki67 and clinical and pathological characteristics were found to be in the expected directions. Our findings indicate that automated scoring of Ki67 can be an efficient method to obtain good quality data across large numbers of TMAs from multicentre studies. However, robust algorithm development and rigorous pre- and post-analytical quality control procedures are necessary in order to ensure satisfactory performance.ABCS was supported by the Dutch Cancer Society [grants NKI 2007-3839; 2009-4363]; BBMRI-NL, which is a Research Infrastructure financed by the Dutch government (NWO 184.021.007); and the Dutch National Genomics Initiative.
CNIO-BCS was supported by the Genome Spain Foundation, the Red Tematica de Investigacion Cooperativa en Cancer and grants from the Asociacion Espaola Contra el Cancer and the Fondo de Investigacion Sanitario (PI11/00923 and PI081120). The Human Genotyping-CEGEN Unit (CNIO) is supported by the Instituto de Salud Carlos III.
The ESTHER study was supported by a grant from the Baden Wurttemberg Ministry of Science, Research and Arts. Additional cases were recruited in the context of the VERDI study, which was supported by a grant from the German Cancer Aid (Deutsche Krebshilfe).
The KBCP was financially supported by the special Government Funding (EVO) of Kuopio University Hospital grants, Cancer Fund of North Savo, the Finnish Cancer Organizations, the Academy of Finland and by the strategic funding of the University of Eastern Finland.
We wish to thank Heather Thorne, Eveline Niedermayr, all the kConFab research nurses and staff, the heads and staff of the Family Cancer Clinics, and the Clinical Follow Up Study (which has received funding from the NHMRC, the National Breast Cancer Foundation, Cancer Australia, and the National Institute of Health (USA)) for their contributions to this resource, and the many families who contribute to kConFab. kConFab is supported by a grant from the National Breast Cancer Foundation, and previously by the National Health and Medical Research Council (NHMRC), the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia, and the Cancer Foundation of Western Australia.
The MARIE study was supported by the Deutsche Krebshilfe e.V. [70-2892-BR I, 106332, 108253, 108419], the Hamburg Cancer Society, the German Cancer Research Center (DKFZ) and the Federal Ministry of Education and Research (BMBF) Germany [01KH0402].
The MCBCS was supported by an NIH Specialized Program of Research Excellence (SPORE) in Breast Cancer [CA116201], the Breast Cancer Research Foundation, the Mayo Clinic Breast Cancer Registry and a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation.
ORIGO authors thank E. Krol-Warmerdam, and J. Blom; The contributing studies were funded by grants from the Dutch Cancer Society (UL1997-1505) and the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL CP16).
PBCS was funded by Intramural Research Funds of the National Cancer Institute, Department of Health and Human Services, USA.
The RBCS was funded by the Dutch Cancer Society (DDHK 2004-3124, DDHK 2009-4318). SEARCH is funded by programme grant from Cancer Research UK [C490/A10124. C490/A16561] and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge. Part of this work was supported by the European Community’s Seventh Framework Programme under grant agreement number 223175 (grant number HEALTH-F2-2009223175) (COGS).
The UKBGS is funded by Breakthrough Breast Cancer and the Institute of Cancer Research (ICR), London. ICR acknowledges NHS funding to the NIHR Biomedical Research Centre.
We acknowledge funds from Breakthrough Breast Cancer, UK, in support of MGC at the time this work was carried out and funds from the Cancer Research, UK, in support of MA.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/cjp2.4
High-throughput automated scoring of Ki67 in breast cancer tissue microarrays from the Breast Cancer Association Consortium (BCAC)
Automated methods are needed to facilitate high-throughput and reproducible scoring of Ki67 and
other markers in breast cancer tissue microarrays (TMAs) in large-scale studies. To address this need,
we developed an automated protocol for Ki67 scoring and evaluated its performanc
Investigation of associations between retinal microvascular parameters and albuminuria in UK Biobank: a cross-sectional case-control study.
BACKGROUND: Associations between microvascular variation and chronic kidney disease (CKD) have been reported previously. Non-invasive retinal fundus imaging enables evaluation of the microvascular network and may offer insight to systemic risk associated with CKD. METHODS: Retinal microvascular parameters (fractal dimension [FD] - a measure of the complexity of the vascular network, tortuosity, and retinal arteriolar and venular calibre) were quantified from macula-centred fundus images using the Vessel Assessment and Measurement Platform for Images of the REtina (VAMPIRE) version 3.1 (VAMPIRE group, Universities of Dundee and Edinburgh, Scotland) and assessed for associations with renal damage in a case-control study nested within the multi-centre UK Biobank cohort study. Participants were designated cases or controls based on urinary albumin to creatinine ratio (ACR) thresholds. Participants with ACR ≥ 3 mg/mmol (ACR stages A2-A3) were characterised as cases, and those with an ACR < 3 mg/mmol (ACR stage A1) were categorised as controls. Participants were matched on age, sex and ethnic background. RESULTS: Lower FD (less extensive microvascular branching) was associated with a small increase in odds of albuminuria independent of blood pressure, diabetes and other potential confounding variables (odds ratio [OR] 1.18, 95% confidence interval [CI] 1.03-1.34 for arterioles and OR 1.24, CI 1.05-1.47 for venules). Measures of tortuosity or retinal arteriolar and venular calibre were not significantly associated with ACR. CONCLUSIONS: This study supports previously reported associations between retinal microvascular FD and other metabolic disturbances affecting the systemic vasculature. The association between retinal microvascular FD and albuminuria, independent of diabetes and blood pressure, may represent a useful indicator of systemic vascular damage associated with albuminuria
Automated quantification of retinal vessel morphometry in the UK Biobank Cohort
The following topics are dealt with: feature extraction; learning (artificial intelligence); image classification; image segmentation; computer vision; object detection; feedforward neural nets; image colour analysis; image representation; medical image processing
Performance of automated scoring of ER, PR, HER2, CK5/6 and EGFR in breast cancer tissue microarrays in the Breast Cancer Association Consortium
Breast cancer risk factors and clinical outcomes vary by tumour marker expression. However, individual studies often lack the power required to assess these relationships, and large-scale analyses are limited by the need for high throughput, standardized scoring methods. To address these limitations, we assessed whether automated image analysis of immunohistochemically stained tissue microarrays can permit rapid, standardized scoring of tumour markers from multiple studies. Tissue microarray sections prepared in nine studies containing 20 263 cores from 8267 breast cancers stained for two nuclear (oestrogen receptor, progesterone receptor), two membranous (human epidermal growth factor receptor 2 and epidermal growth factor receptor) and one cytoplasmic (cytokeratin 5/6) marker were scanned as digital images. Automated algorithms were used to score markers in tumour cells using the Ariol system. We compared automated scores against visual reads, and their associations with breast cancer survival. Approximately 65–70% of tissue microarray cores were satisfactory for scoring. Among satisfactory cores, agreement between dichotomous automated and visual scores was highest for oestrogen receptor (Kappa = 0.76), followed by human epidermal growth factor receptor 2 (Kappa = 0.69) and progesterone receptor (Kappa = 0.67). Automated quantitative scores for these markers were associated with hazard ratios for breast cancer mortality in a dose-response manner. Considering visual scores of epidermal growth factor receptor or cytokeratin 5/6 as the reference, automated scoring achieved excellent negative predictive value (96–98%), but yielded many false positives (positive predictive value = 30–32%). For all markers, we observed substantial heterogeneity in automated scoring performance across tissue microarrays. Automated analysis is a potentially useful tool for large-scale, quantitative scoring of immunohistochemically stained tissue microarrays available in consortia. However, continued optimization, rigorous marker-specific quality control measures and standardization of tissue microarray designs, staining and scoring protocols is needed to enhance results.Peer reviewe
- …