273 research outputs found
MAGIC Upper Limits for two Milagro-detected, Bright Fermi Sources in the Region of SNR G65.1+0.6
We report on the observation of the region around supernova remnant G65.1+0.6
with the stand-alone MAGIC-I telescope. This region hosts the two bright GeV
gamma-ray sources 1FGL J1954.3+2836 and 1FGL J1958.6+2845. They are identified
as GeV pulsars and both have a possible counterpart detected at about 35 TeV by
the Milagro observatory. MAGIC collected 25.5 hours of good quality data, and
found no significant emission in the range around 1 TeV. We therefore report
differential flux upper limits, assuming the emission to be point-like (<0.1
deg) or within a radius of 0.3 deg. In the point-like scenario, the flux limits
around 1 TeV are at the level of 3 % and 2 % of the Crab Nebula flux, for the
two sources respectively. This implies that the Milagro emission is either
extended over a much larger area than our point spread function, or it must be
peaked at energies beyond 1 TeV, resulting in a photon index harder than 2.2 in
the TeV band.Comment: 8 pages, 3 figures, 1 tabl
Observation of Pulsed Gamma-rays Above 25 GeV from the Crab Pulsar with MAGIC
One fundamental question about pulsars concerns the mechanism of their pulsed
electromagnetic emission. Measuring the high-end region of a pulsar's spectrum
would shed light on this question. By developing a new electronic trigger, we
lowered the threshold of the Major Atmospheric gamma-ray Imaging Cherenkov
(MAGIC) telescope to 25 GeV. In this configuration, we detected pulsed
gamma-rays from the Crab pulsar that were greater than 25 GeV, revealing a
relatively high cutoff energy in the phase-averaged spectrum. This indicates
that the emission occurs far out in the magnetosphere, hence excluding the
polar-cap scenario as a possible explanation of our measurement. The high
cutoff energy also challenges the slot-gap scenario.Comment: Slight modification of the analysis: Fitting a more general function
to the combined data set of COMPTEL, EGRET and MAGIC. Final result and
conclusion is unchange
First bounds on the high-energy emission from isolated Wolf-Rayet binary systems
High-energy gamma-ray emission is theoretically expected to arise in tight
binary star systems (with high mass loss and high velocity winds), although the
evidence of this relationship has proven to be elusive so far. Here we present
the first bounds on this putative emission from isolated Wolf-Rayet (WR) star
binaries, WR 147 and WR 146, obtained from observations with the MAGIC
telescope.Comment: (Authors are the MAGIC Collaboration.) Manuscript in press at The
Astrophysical Journal Letter
Simultaneous multi-frequency observation of the unknown redshift blazar PG 1553+113 in March-April 2008
The blazar PG 1553+113 is a well known TeV gamma-ray emitter. In this paper,
we determine its spectral energy distribution using simultaneous
multi-frequency data in order to study its emission processes. An extensive
campaign was carried out between March and April 2008, where optical, X-ray,
high-energy (HE) gamma-ray, and very-high-energy (VHE) gamma-ray data were
obtained with the KVA, Abastumani, REM, RossiXTE/ASM, AGILE and MAGIC
telescopes, respectively. This is the first simultaneous broad-band (i.e.,
HE+VHE) gamma-ray observation, though AGILE did not detect the source. We
combine data to derive source's spectral energy distribution and interpret its
double peaked shape within the framework of a synchrotron self compton modelComment: 5 pages, 2 figures, publishe
A search for spectral hysteresis and energy-dependent time lags from X-ray and TeV gamma-ray observations of Mrk 421
Blazars are variable emitters across all wavelengths over a wide range of
timescales, from months down to minutes. It is therefore essential to observe
blazars simultaneously at different wavelengths, especially in the X-ray and
gamma-ray bands, where the broadband spectral energy distributions usually
peak.
In this work, we report on three "target-of-opportunity" (ToO) observations
of Mrk 421, one of the brightest TeV blazars, triggered by a strong flaring
event at TeV energies in 2014. These observations feature long, continuous, and
simultaneous exposures with XMM-Newton (covering X-ray and optical/ultraviolet
bands) and VERITAS (covering TeV gamma-ray band), along with contemporaneous
observations from other gamma-ray facilities (MAGIC and Fermi-LAT) and a number
of radio and optical facilities. Although neither rapid flares nor significant
X-ray/TeV correlation are detected, these observations reveal subtle changes in
the X-ray spectrum of the source over the course of a few days. We search the
simultaneous X-ray and TeV data for spectral hysteresis patterns and time
delays, which could provide insight into the emission mechanisms and the source
properties (e.g. the radius of the emitting region, the strength of the
magnetic field, and related timescales). The observed broadband spectra are
consistent with a one-zone synchrotron self-Compton model. We find that the
power spectral density distribution at Hz from the
X-ray data can be described by a power-law model with an index value between
1.2 and 1.8, and do not find evidence for a steepening of the power spectral
index (often associated with a characteristic length scale) compared to the
previously reported values at lower frequencies.Comment: 45 pages, 15 figure
Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope
We analyze the timing of photons observed by the MAGIC telescope during a
flare of the active galactic nucleus Mkn 501 for a possible correlation with
energy, as suggested by some models of quantum gravity (QG), which predict a
vacuum refractive index \simeq 1 + (E/M_{QGn})^n, n = 1,2. Parametrizing the
delay between gamma-rays of different energies as \Delta t =\pm\tau_l E or
\Delta t =\pm\tau_q E^2, we find \tau_l=(0.030\pm0.012) s/GeV at the 2.5-sigma
level, and \tau_q=(3.71\pm2.57)x10^{-6} s/GeV^2, respectively. We use these
results to establish lower limits M_{QG1} > 0.21x10^{18} GeV and M_{QG2} >
0.26x10^{11} GeV at the 95% C.L. Monte Carlo studies confirm the MAGIC
sensitivity to propagation effects at these levels. Thermal plasma effects in
the source are negligible, but we cannot exclude the importance of some other
source effect.Comment: 12 pages, 3 figures, Phys. Lett. B, reflects published versio
Description of data-sources used in SafetyCube. Deliverable 3.1 of the H2020 project SafetyCube
Safety CaUsation, Benefits and Efficiency (SafetyCube) is a European Commission supported Horizon 2020 project with the objective of developing an innovative road safety Decision Support System (DSS) that will enable policy-makers and stakeholders to select and implement the most appropriate strategies, measures and cost-effective approaches to reduce casualties of all road user types and all severities.
This deliverable describes the available data in the form of an inventory of databases that can be used for analyses within the project. Two general types of data are available: one describing the involvement of different components for the road safety (vehicles, infrastructure, and the road user) and one describing the injury outcomes of a crash. These two database categories are available to the partners of SafetyCube and gathered in two excel tables. One table contains traffic databases (accident and naturalistic driving studies) and the second table contains injury databases. The tables contain information on 58 and 35 variables, respectively. The key information describing the databases that was needed for the inventory were items such as:
Type of data collected (crashes, injuries, etc.)
Documentation of the variables
Sampling criteria for the data collected
SafetyCube partners with access to the data
Extent of data access (raw data vs. summary tables) The tables contain 36 traffic accident databases, five naturalistic driving studies or field-tests and 22 injury databases where of four were coded in both sheets
A search for Very High Energy gamma-ray emission from Scorpius X-1 with the MAGIC telescopes
The acceleration of particles up to GeV or higher energies in microquasars
has been the subject of considerable theoretical and observational efforts in
the past few years. Sco X-1 is a microquasar from which evidence of highly
energetic particles in the jet has been found when it is in the so-called
Horizontal Branch (HB), a state when the radio and hard X-ray fluxes are higher
and a powerful relativistic jet is present. Here we present the first very high
energy gamma-ray observations of Sco X-1 obtained with the MAGIC telescopes. An
analysis of the whole dataset does not yield a significant signal, with 95% CL
flux upper limits above 300 GeV at the level of 2.4x10^{-12} ph/cm^2/s.
Simultaneous RXTE observations were conducted to search for TeV emission during
particular X-ray states of the source. A selection of the gamma-ray data
obtained during the HB based on the X-ray colors did not yield a signal either,
with an upper limit of 3.4x10^{-12} ph/cm^2/s. These upper limits place a
constraint on the maximum TeV luminosity to non-thermal X-ray luminosity of
L_{VHE}/L_{ntX}<0.02, that can be related to a maximum TeV luminosity to jet
power ratio of L_{VHE}/L_{j}<10^{-3}. Our upper limits indicate that the
underlying high-energy emission physics in Sco X-1 must be inherently different
from that of the hitherto detected gamma-ray binaries.Comment: 5 pages, 2 figures, 2 tables. Version as published in ApJ
MAGIC observations and multiwavelength properties of the quasar 3C279 in 2007 and 2009
3C 279, the first quasar discovered to emit VHE gamma-rays by the MAGIC telescope in 2006, was reobserved by MAGIC in January 2007 during a major optical flare and from December 2008 to April 2009 following an alert from the Fermi space telescope on an exceptionally high gamma -ray state. The January 2007 observations resulted in a detection on January 16 with significance 5.2 sigma, corresponding to a F(> 150 GeV) (3.8 \pm 0.8) \cdot 10^-11 ph cm^-2 s^-1 while the overall data sample does not show significant signal. The December 2008 - April 2009 observations did not detect the source. We study the multiwavelength behavior of the source at the epochs of MAGIC observations, collecting quasi-simultaneous data at optical and X-ray frequencies and for 2009 also gamma-ray data from Fermi. We study the light curves and spectral energy distribution of the source. The spectral energy distributions of three observing epochs (including the February 2006, which has been previously published in Albert et al. 2008a) are modeled with one-zone inverse Compton models and the emission on January 16, 2007 also with two zone model and with a lepto-hadronic model. We find that the VHE gamma-ray emission detected in 2006 and 2007 challenges standard one-zone model, based on relativistic electrons in a jet scattering broad line region photons, while the other studied models fit the observed spectral energy distribution more satisfactorily
- …