109 research outputs found

    Testing the validity of THz reflection spectra by dispersion relations

    Full text link
    Complex response function obtained in reflection spectroscopy at terahertz range is examined with algorithms based on dispersion relations for integer powers of complex reflection coefficient, which emerge as a powerful and yet uncommon tools in examining the consistency of the spectroscopic data. It is shown that these algorithms can be used in particular for checking the success of correction of the spectra by the methods of Vartiainen et al [1] and Lucarini et al [2] to remove the negative misplacement error in the terahertz time-domain spectroscopy.Comment: 17 pages, 4 figure

    Pohjoisnavan jääkalotti, Luoteisväylä ja ilmastonmuutos

    Get PDF
    Norjalainen, Roald Amundsenin johtama retkikunta purjehti Gjøa-laivalla Luoteisväylän läpi 1903–06 joutuen kuitenkin matkan aikana jääesteiden vuoksi viettämään kaksi talvea etelämpänä Kanadan arktisessa saaristossa. Vasta kesällä 2007 nykyisen kasvihuoneilmiön voimistuessa ilmastonmuutoksen seurauksena Luoteisväylä avautui laivaliikenteelle elo–syyskuussa noin kuukauden ajaksi. Tämän jälkeen eräät ilmastotieteilijät kirjoittivat internetissä, että kesällä 2008 napajäätikkö sulaa kokonaan ja silloin pohjoisnavalla voi harrastaa vesisuksilla hiihtoa! Mutta kesällä 2008 napajää ei sulanut. Luoteisväylä ei avautunut silloin eikä seuraavana kesänäkään laivaliikenteelle. Ilmastonmuutoksesta kiistelee kaksi tieteellistä koulukuntaa, joista toinen edustaa ihmisen aiheuttamaa ilmastonmuutosta (hiilidioksidin määrän kasvu ilmakehässä), toinen koulukunta katsoo auringon aktiivisuuden vaihtelun olevan syynä (säteilyn määrän vaihtelut)

    Nonlinear Optical Response Functions of Mott Insulators Based on Dynamical Mean Field Approximation

    Full text link
    We investigate the nonlinear optical susceptibilities of Mott insulators with the dynamical mean field approximation. The two-photon absorption (TPA) and the third-harmonic generation (THG) spectra are calculated, and the classification by the types of coupling to external fields shows different behavior from conventional semiconductors. The direct transition terms are predominant both in the TPA and THG spectra, and the importance of taking all types of interaction with the external field into account is illustrated in connection with the THG spectrum and dcKerr effect. The dependence of the TPA and THG spectra on the Coulomb interaction indicate a scaling relation. We apply this relation to the quantitative evaluation and obtain results comparable to those of experiments.Comment: 14 pages, 12 figure

    Analysis of Granular Packing Structure by Scattering of THz Radiation

    Get PDF
    Scattering methods are widespread used to characterize the structure and constituents of matter on small length scales. This motivates this introductory text on identifying prospective approaches to scattering-based methods for granular media. A survey to light scattering by particles and particle ensembles is given. It is elaborated why the established scattering methods using X-rays and visible light cannot in general be transferred to granular media. Spectroscopic measurements using Terahertz radiation are highlighted as they to probe the scattering properties of granular media, which are sensitive to the packing structure. Experimental details to optimize spectrometer for measurements on granular media are discussed. We perform transmission measurements on static and agitated granular media using Fourier-transform spectroscopy at the THz beamline of the BessyII storage ring. The measurements demonstrate the potential to evaluate degrees of order in the media and to track transient structural states in agitated bulk granular media.Comment: 12 Pages, 9 Figures, 56 Reference

    PHOTON MIGRATION IN PULP AND PAPER

    Get PDF
    Abstract The thesis clearly demonstrates that photon migration measurements allow characterization of pulp and paper properties, especially the fines and filler content of pulp, and the basis weight, thickness and porosity of paper. Pulp and paper are materials with a worldwide significance. Their properties strongly depend on the manufacturing process used. For efficient process control, the employed monitoring and measuring has to be fast. Therefore it is worthwhile to try to develop new approaches and techniques for such measurements. Recent advancements in optics offer new possibilities for such development. If two samples have different optical properties their photon migration distributions are different. The measurement of a photon migration distribution allows some features between two optically slightly dissimilar samples to be distinguished. Some simple measurements, which only yielded the photons' average time of flight, were made with an oscilloscope and a time-of-flight lidar. More precise measurements yielding photon pathway distribution or some selected characteristics like light pulse rise time, broadening, or fall time were measured with a streak camera. Two methods to assess photon path length distribution were introduced: particle determination with simulation, and streak camera with deconvolution. The basic properties for pulp are consistency and fines content and for paper the basic properties are thickness, basis weight and porosity. The influence on photon migration caused by changes in these basic properties was determined. As pulp and paper are rarely very basic, an additional property was demonstrated for both materials. For pulp it was the content of filler talc, and for paper it was the use of beaten pulp as a raw material. These additional properties were also distinguishable

    Photopolymer-based volume holographic optical elements: design and possible applications

    Get PDF
    In this paper, Volume Holographic Optical Elements (V-HOEs), such as holographic gratings and spherical lenses, are designed and fabricated by using a prototype of photopolymer. The recording process of V-HOEs and their appropriate characterization are described. Moreover, V-HOEs possible applications as solar concentrator are investigated and results are discussed. Finally, a system that allows passive solar tracking is proposed and preliminary results are reported

    Coherent detection of metal-metal terahertz quantum cascade lasers with improved emission characteristics

    Get PDF
    Coherent detection of emission from quantum cascade lasers with metal-metal waveguides is demonstrated through free-space coupling of a THz pulse to the sub-wavelength waveguide. We implement a simple, monolithic planar horn antenna design on the metal-metal waveguide that reduces the impedance mis-match to the waveguide. The resulting devices show up to 10 times more directed output power than conventional metal-metal waveguides. This enhanced coupling to free-space allows a more efficient injection of broad-band THz pulses into the waveguide. Through this, we are able to seed the laser emission and coherently detect the laser emission by electro-optic sampling

    Characterization of the Pore Structure of Functionalized Calcium Carbonate Tablets by Terahertz Time-Domain Spectroscopy and X-Ray Computed Microtomography

    Get PDF
    Novel excipients are entering the market to enhance the bioavailability of drug particles by having a high porosity and, thus, providing a rapid liquid uptake and disintegration to accelerate subsequent drug dissolution. One example of such a novel excipient is functionalized calcium carbonate, which enables the manufacture of compacts with a bimodal pore size distribution consisting of larger interparticle and fine intraparticle pores. Five sets of functionalized calcium carbonate tablets with a target porosity of 45%-65% were prepared in 5% steps and characterized using terahertz time-domain spectroscopy and X-ray computed microtomography. Terahertz time-domain spectroscopy was used to derive the porosity using effective medium approximations, that is, the traditional and an anisotropic Bruggeman model. The anisotropic Bruggeman model yields the better correlation with the nominal porosity (R2^{2} = 0.995) and it provided additional information about the shape and orientation of the pores within the powder compact. The spheroidal (ellipsoids of revolution) shaped pores have a preferred orientation perpendicular to the compaction direction causing an anisotropic behavior of the dielectric porous medium. The results from X-ray computed microtomography confirmed the nonspherical shape and the orientation of the pores, and it further revealed that the anisotropic behavior is mainly caused by the interparticle pores. The information from both techniques provides a detailed insight into the pore structure of pharmaceutical tablets. This is of great interest to study the impact of tablet microstructure on the disintegration and dissolution performance.Drs Markl and Zeitler would like to acknowledge the U.K. Engineering and Physical Sciences Research Council for funding (EP/L019922/1)
    corecore