53 research outputs found
Optimized preoperative planning of double outlet right ventricle patients by 3D printing and virtual reality: a pilot study
OBJECTIVES: In complex double outlet right ventricle (DORV) patients, the optimal surgical approach may be difficult to assess based on conventional 2-dimensional (2D) ultrasound (US) and computed tomography (CT) imaging. The aim of this study is to assess the added value of 3-dimensional (3D) printed and 3D virtual reality (3D-VR) models of the heart used for surgical planning in DORV patients, supplementary to the gold standard 2D imaging modalities.METHODS: Five patients with different DORV subtypes and high-quality CT scans were selected retrospectively. 3D prints and 3D-VR models were created. Twelve congenital cardiac surgeons and paediatric cardiologists, from 3 different hospitals, were shown 2D-CT first, after which they assessed the 3D print and 3D-VR models in random order. After each imaging method, a questionnaire was filled in on the visibility of essential structures and the surgical plan.RESULTS: Spatial relationships were generally better visualized using 3D methods (3D printing/3D-VR) than in 2D. The feasibility of ventricular septum defect patch closure could be determined best using 3D-VR reconstructions (3D-VR 92%, 3D print 66% and US/CT 46%, P < 0.01). The percentage of proposed surgical plans corresponding to the performed surgical approach was 66% for plans based on US/CT, 78% for plans based on 3D printing and 80% for plans based on 3D-VR visualization.CONCLUSIONS: This study shows that both 3D printing and 3D-VR have additional value for cardiac surgeons and cardiologists over 2D imaging, because of better visualization of spatial relationships. As a result, the proposed surgical plans based on the 3D visualizations matched the actual performed surgery to a greater extent.Thoracic Surger
Ototopical drops containing a novel antibacterial synthetic peptide: safety and efficacy in adults with chronic suppurative otitis media
ObjectiveChronic suppurative otitis media (CSOM) is a chronic infectious disease with worldwide prevalence that causes hearing loss and decreased quality of life. As current (antibiotic) treatments often unsuccessful and antibiotic resistance is emerging, alternative agents and/or strategies are urgently needed. We considered the synthetic antimicrobial and anti-biofilm peptide P60.4Ac to be an interesting candidate because it also displays anti-inflammatory activities including lipopolysaccharide-neutralizing activity. The aim of the present study was to investigate the safety and efficacy of ototopical drops containing P60.4Ac in adults with CSOM without cholesteatoma.MethodsWe conducted a range-finding study in 16 subjects followed by a randomized, double blinded, placebo-controlled, multicentre phase IIa study in 34 subjects. P60.4Ac-containing ototopical drops or placebo drops were applied twice a day for 2 weeks and adverse events (AEs) and medication use were recorded. Laboratory tests, swabs from the middle ear and throat for bacterial cultures, and audiometry were performed at intervals up to 10 weeks after therapy. Response to treatment was assessed by blinded symptom scoring on otoscopy.ResultsApplication of P60.4Ac-containing ototopical drops (0.25-2.0 mg of peptide/ml) in the ear canal of patients suffering from CSOM was found to be safe and well-tolerated. The optimal dose (0.5 mg of peptide/ml) was selected for the subsequent phase IIa study. Safety evaluation revealed only a few AEs that were unlikely related to study treatment and all, except one, were of mild to moderate intensity. In addition to this excellent safety profile, P60.4Ac ototopical drops resulted in a treatment success in 47% of cases versus 6% in the placebo group.ConclusionThe efficacy/safety balance assessed in the present study provides a compelling justification for continued clinical development of P60.4Ac in therapy-resistant CSOM.Development and application of statistical models for medical scientific researc
The ANTARES Optical Beacon System
ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It
consists of a three dimensional array of photomultiplier tubes that can detect
the Cherenkov light induced by charged particles produced in the interactions
of neutrinos with the surrounding medium. High angular resolution can be
achieved, in particular when a muon is produced, provided that the Cherenkov
photons are detected with sufficient timing precision. Considerations of the
intrinsic time uncertainties stemming from the transit time spread in the
photomultiplier tubes and the mechanism of transmission of light in sea water
lead to the conclusion that a relative time accuracy of the order of 0.5 ns is
desirable. Accordingly, different time calibration systems have been developed
for the ANTARES telescope. In this article, a system based on Optical Beacons,
a set of external and well-controlled pulsed light sources located throughout
the detector, is described. This calibration system takes into account the
optical properties of sea water, which is used as the detection volume of the
ANTARES telescope. The design, tests, construction and first results of the two
types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.
First results of the Instrumentation Line for the deep-sea ANTARES neutrino telescope
In 2005, the ANTARES Collaboration deployed and operated at a depth of 2500 m a so-called Mini Instrumentation Line equipped with Optical Modules (MILOM) at the ANTARES site. The various data acquired during the continuous operation from April to December 2005 of the MILOM confirm the satisfactory performance of the Optical Modules, their front-end electronics and readout system. as well as the calibration devices of the detector. The in situ measurement of the Optical Module time response yields a resolution better than 0.5 ns. The performance of the acoustic positioning system, which enables the spatial reconstruction of the ANTARES detector with a precision of about 10 cm, is verified. These results demonstrate that with the full ANTARES neutrino telescope the design angular resolution of better than 0.3 degrees can be realistically achieved
ANTARES: the first undersea neutrino telescope
The ANTARES Neutrino Telescope was completed in May 2008 and is the first
operational Neutrino Telescope in the Mediterranean Sea. The main purpose of
the detector is to perform neutrino astronomy and the apparatus also offers
facilities for marine and Earth sciences. This paper describes the design, the
construction and the installation of the telescope in the deep sea, offshore
from Toulon in France. An illustration of the detector performance is given
The data acquisition system for the ANTARES neutrino telescope
The ANTARES neutrino telescope is being constructed in the Mediterranean Sea.
It consists of a large three-dimensional array of photo-multiplier tubes. The
data acquisition system of the detector takes care of the digitisation of the
photo-multiplier tube signals, data transport, data filtering, and data
storage. The detector is operated using a control program interfaced with all
elements. The design and the implementation of the data acquisition system are
described.Comment: 20 pages, 6 figures, accepted for publication in Nucl. Instrum. Meth.
In vivo screening of five phytochemicals/extracts and a fungal immunomodulatory protein against colibacillosis in broilers
Five phytochemicals/extracts (an extract from Echinacea purpurea, a Ă-glucan-rich extract from Shiitake, betaine [Betainâą], curcumin from Curcuma longa [turmeric] powder, carvacrol and also a recombinant fungal immunomodulatory protein [FIP] from Ganoderma lucidum) cloned and expressed in Escherichia coli were investigated for their anticolibacillosis potential in three chicken experiments, which were conducted in floor pens. Birds that were inoculated with E. coli intratracheally were treated with the phytochemicals/extracts or the FIP and compared with doxycycline-medicated and non-medicated infected broilers. Non-medicated and non-infected birds were used as negative controls. Mortality, colibacillosis lesions and body weight gains were used as parameters. Considering the sum of dead birds and chickens with generalized colibacillosis per group, there was no significant difference between the positive control groups and birds treated with phytochemicals/extracts or the FIP. In contrast, doxycycline-treated birds showed significantly lower mortality and generalized colibacillosis. Moreover, none of the phytochemicals/extracts and the FIP improved recovery from colibacillosis lesions, while all doxycycline-treated broilers recovered completely. The negative control birds and doxycycline-treated groups consistently showed the highest weight gains. Pulsed-field gel electrophoresis of reisolates showed that they were genetically indistinguishable from the inoculation strain. In conclusion, none of the tested phytochemicals/extracts and the FIP significantly reduced the E. coli-induced mortality and generalized colibacillosis, and nor did they improve recovery from colibacillosis lesions
- âŠ