316 research outputs found

    Relativistic Four-Component DFT Calculations of Vibrational Frequencies

    Get PDF
    We investigate the effect of relativity on harmonic vibrational frequencies. Density functional theory (DFT) calculations using the four-component Dirac–Coulomb Hamiltonian have been performed for 15 hydrides (H2X, X = O, S, Se, Te, Po; XH3, X = N, P, As, Sb, Bi; and XH4, X = C, Si, Ge, Sn, Pb) as well as for HC≡CPbH3. The vibrational frequencies have been calculated using finite differences of the molecular energy with respect to geometrical distortions of the nuclei. The influences of the choice of basis set, exchange–correlation functional, and step length for the numerical differentiation on the calculated harmonic vibrational frequencies have been tested, and the method has been found to be numerically robust. Relativistic effects are noticeable for the heavier congeners H2Te and H2Po, SbH3 and BiH3, and SnH4 and PbH4 and are much more pronounced for the vibrational modes with higher frequencies. Spin–orbit effects constitute a very small fraction of the total relativistic effects, except for H2Te and H2Po. For HC≡CPbH3 we find that only the frequencies of the modes with large contributions from Pb displacements are significantly affected by relativity

    A simple scheme for magnetic balance in four-component relativistic Kohn-Sham calculations of nuclear magnetic resonance shielding constants in a Gaussian basis

    Get PDF
    International audienceWe report the implementation of nuclear magnetic resonance (NMR) shielding tensors within the four-component relativistic Kohn-Sham density functional theory including non-collinear spin magnetization and employing London atomic orbitals to ensure gauge origin independent results, together with a new and efficient scheme for assuring correct balance between the large and small components of a molecular four-component spinor in the presence of an external magnetic field (simple magnetic balance). To test our formalism we have carried out calculations of NMR shielding tensors for the HX series (X = F, Cl, Br, I, At), the Xe atom, and the Xe dimer. The advantage of simple magnetic balance scheme combined with the use of London atomic orbitals is the fast convergence of results (when compared with restricted kinetic balance) and elimination of linear dependencies in the basis set (when compared to unrestricted kinetic balance). The effect of including spin magnetization in the description of NMR shielding tensor has been found important for hydrogen atoms in heavy HX molecules, causing an increase of isotropic values of 10%, but negligible for heavy atoms

    A computational protocol for the study of circularly polarized phosphorescence and circular dichroism in spin-forbidden absorption

    Get PDF
    We present a computational methodology to calculate the intensity of circular dichroism (CD) in spin-forbidden absorption and of circularly polarized phosphorescence (CPP) signals, a manifestation of the optical activity of the triplet-singlet transitions in chiral compounds. The protocol is based on the response function formalism and is implemented at the level of time-dependent density functional theory. It has been employed to calculate the spin-forbidden circular dichroism and circularly polarized phosphorescence signals of valence n -> pi* and n <- pi* transitions, respectively, in several chiral enones and diketones. Basis set effects in the length and velocity gauge formulations have been explored, and the accuracy achieved when employing approximate (mean-field and effective nuclear charge) spin-orbit operators has been investigated. CPP is shown to be a sensitive probe of the triplet excited state structure. In many cases the sign of the spin-forbidden CD and CPP signals are opposite. For the beta,gamma-enones under investigation, where there are two minima on the lowest triplet excited state potential energy surface, each minimum exhibits a CPP signal of a different sign

    The Raman optical activity of ÎČ-D-xylose: where experiment and theory meet

    Get PDF
    Besides its applications in bioenergy and biosynthesis, ÎČ-D-xylose is a very simple monosaccharide that exhibits relatively high rigidity. As such, it provides the best basis to study the impact of different solvation shell radii on the computation of its Raman optical activity (ROA) spectrum. Indeed, this chiroptical spectroscopic technique provides exquisite sensitivity to stereochemistry, and benefits much from theoretical support for interpretation. Our simulation approach combines density functional theory (DFT) and molecular dynamics (MD) in order to efficiently account for the crucial hydration effects in the simulation of carbohydrates and their spectroscopic response predictions. Excellent agreement between the simulated spectrum and the experiment was obtained with a solvation radius of 10 Å. Vibrational bands have been resolved from the computed ROA data, and compared with previous results on different monosaccharides in order to identify specific structure–spectrum relationships and to investigate the effect of the solvation environment on the conformational dynamics of small sugars. From the comparison with ROA analytical results, a shortcoming of the classical force field used for the MD simulations has been identified and overcome, again highlighting the complementary role of experiment and theory in the structural characterisation of complex biomolecules. Indeed, due to unphysical puckering, a spurious ring conformation initially led to erroneous conformer ratios, which are used as weights for the averaging of the spectral average, and only by removing this contribution was near perfect comparison between theory and experiment achieved

    Good Computational Practice in the Assignment of Absolute Configurations by TDDFT Calculations of ECD Spectra

    Get PDF
    Quantum-mechanical calculations of chiroptical properties have rapidly become the most popular method for assigning absolute configurations (AC) of organic compounds, including natural products. Black-box time-dependent Density Functional Theory (TDDFT) calculations of electronic circular dichroism (ECD) spectra are nowadays readily accessible to nonexperts. However, an uncritical attitude may easily deliver a wrong answer. We present to the Chirality Forum a discussion on what can be called good computational practice in running TDDFT ECD calculations, highlighting the most crucial points with several examples from the recent literature

    Calculation of Raman optical activity spectra for vibrational analysis

    Get PDF
    By looking back on the history of Raman Optical Activity (ROA), the present article shows that the success of this analytical technique was for a long time hindered, paradoxically, by the deep level of detail and wealth of structural information it can provide. Basic principles of the underlying theory are discussed, to illustrate the technique's sensitivity due to its physical origins in the delicate response of molecular vibrations to electromagnetic properties. Following a short review of significant advances in the application of ROA by UK researchers, we dedicate two extensive sections to the technical and theoretical difficulties that were overcome to eventually provide predictive power to computational simulations in terms of ROA spectral calculation. In the last sections, we focus on a new modelling strategy that has been successful in coping with the dramatic impact of solvent effects on ROA analyses. This work emphasises the role of complementarity between experiment and theory for analysing the conformations and dynamics of biomolecules, so providing new perspectives for methodological improvements and molecular modelling development. For the latter, an example of a next-generation force-field for more accurate simulations and analysis of molecular behaviour is presented. By improving the accuracy of computational modelling, the analytical capabilities of ROA spectroscopy will be further developed so generating new insights into the complex behaviour of molecules

    On the potential application of DFT methods in predicting the interaction-induced electric properties of molecular complexes. Molecular H-bonded chains as a case of study

    Get PDF
    A detailed analysis of the selected DFT functionals for the calculations of interaction-induced dipole moment, polarizability and first-order hyperpolarizability has been carried out. The hydrogen-bonded model chains consisting of HF, H2CO and H3N molecules have been chosen as a case study. The calculations of the components of the static electric properties using the diffuse Dunning’s basis set (aug-cc-pVDZ) have been performed employing different types of density functionals (B3LYP, LC-BLYP, PBE0, M06-2X and CAM-B3LYP). Obtained results have been compared with those gained at the CCSD(T) level of theory. The counterpoise correction scheme, namely site-site function counterpoise, has been applied in order to eliminate basis set superposition error. The performed tests allow to conclude that the DFT functionals can provide a useful tool for prediction of the interaction-induced electric properties, however a caution has to be urged to their decomposition to the two- and many-body terms
    • 

    corecore