9 research outputs found

    The electromagnetic calorimeter for the T2K near detector ND280

    Get PDF
    The T2K experiment studies oscillations of an off-axis muon neutrino beam between the J-PARC accelerator complex and the Super-Kamiokande detector. Special emphasis is placed on measuring the mixing angle θ 13 by observing ν e appearance via the sub-dominant νμ ν e oscillation and searching for CP violation in the lepton sector. The experiment includes a sophisticated, off-axis, near detector, the ND280, situated 280 m downstream of the neutrino production target in order to measure the properties of the neutrino beam and to understand better neutrino interactions at the energy scale below a few GeV. The data collected with the ND280 are used to study charged- and neutral-current neutrino interaction rates and kinematics prior to oscillation, in order to reduce uncertainties in the oscillation measurements by the far detector. A key element of the near detector is the ND280 electromagnetic calorimeter (ECal), consisting of active scintillator bars sandwiched between lead sheets and read out with multi-pixel photon counters (MPPCs). The ECal is vital to the reconstruction of neutral particles, and the identification of charged particle species. The ECal surrounds the Pi-0 detector (PØD) and the tracking region of the ND280, and is enclosed in the former UA1/NOMAD dipole magnet. This paper describes the design, construction and assembly of the ECal, as well as the materials from which it is composed. The electronic and data acquisition (DAQ) systems are discussed, and performance of the ECal modules, as deduced from measurements with particle beams, cosmic rays, the calibration system, and T2K data, is described.© 2013 IOP Publishing Ltd and Sissa Medialab srl.The ECal detector has been built and is operated using funds provided by the Science and Technology Facilities Council U.K. Important support was also provided by the collaborating institutions. Individual researchers have been supported by the Royal Society and the European Research Council

    Exercise capacity is not decreased in children who have undergone lung resection early in life for congenital thoracic malformations compared to healthy age-matched children

    No full text
    Purpose The purpose of this study was to compare (i) the exercise capacity and (ii) lung function prior to and immediately post cardiopulmonary exercise tests (CPET) of children who underwent early life lung resection for Congenital Pulmonary Airway Malformations (CPAM) to healthy control children. Method Eight children with CPAM (four males, age 9.61.8 years) and eight control children without respiratory disease (three males, age 9.41.4 years) performed a CPET on a cycle ergometer, during which maximal oxygen consumption (V.O-2max) and heart rate were measured. Prior to and immediately post CPET, lung function measures including Nitrogen Multiple Breath Washout (MBW) and spirometry were performed. Results There were no significant between group differences in pre CPET lung function (P>0.05) or maximal exercise capacity (V.O-2max CPAM: 39.4mL(.)kg(-1.)min(-1), Control: 40.5mL(.)kg(-1.)min(-1)). Post CPET, FEV1 was significantly lower in the CPAM group, with two participants diagnosed subsequently with exercise induced bronchospasm based on post-CPET spirometry and follow-up clinical investigations. Conclusion Early life lung resection for CPAM does not appear to have negative implications for exercise capacity later in childhood. Clinicians should be aware that dyspnoea following exercise may be due to asthma rather than residual effects of CPAM in these children

    Clinical and lung function outcomes in a cohort of children with severe asthma

    No full text
    BACKGROUND: Uncontrolled severe asthma in children is burdensome and challenging to manage. This study aims to describe outcomes in children with uncontrolled severe asthma managed in a nurse-led severe asthma clinic (SAC). METHODS: This retrospective analysis uses data collected from children referred by a paediatric respiratory specialist to a nurse-led SAC for uncontrolled severe asthma between 2014 and 2019. The pre-clinical assessments included a home visit to assess modifiable factors that could be addressed to improve control. A comprehensive lung function analysis was conducted at each visit. Interventions were personalised and included biologic agents. Statistical analysis was performed using nonparametric, two-tailed Mann-Whitney U-test, the parametric Student’s t-test, or analysis of variance (ANOVA) as appropriate. RESULTS: Twenty-three children with a median age of 12 years were seen once, and 16 were followed up. Compared to a non-asthmatic (NA) and asthmatic (A) age-matched cohort, children with severe asthma (SA) had a lower FEV1, and FVC% predicted before and after bronchodilator inhalation, and a higher mean Lung Clearance Index [LCI] (10.5 [SA] versus 7.3 [NA] versus 7.6 [A], p = 0.003). Almost 80% of children with SA had an abnormal LCI, and 48% had a reduced FEV1% at the first SAC visit. Asthma control and FEV1% predicted significantly improved at a follow-up visit, while LCI remained abnormal in the majority of children (83%). CONCLUSION: Over time, many children with severe asthma showed improved clinical outcomes and lung function while lung ventilation inhomogeneities persisted. Future appropriately controlled studies are required to determine if a nurse-led multidisciplinary SAC is associated with better outcomes

    The T2K experiment

    Get PDF
    The T2K experiment is a long baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle θ13 by observing νe appearance in a νμ beam. It also aims to make a precision measurement of the known oscillation parameters, and sin22θ23, via νμ disappearance studies. Other goals of the experiment include various neutrino cross-section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC. This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem

    Habitat Capacity for Cougar Recolonization in the Upper Great Lakes Region

    No full text
    BACKGROUND: Recent findings indicate that cougars (Puma concolor) are expanding their range into the midwestern United States. Confirmed reports of cougar in Michigan, Minnesota, and Wisconsin have increased dramatically in frequency during the last five years, leading to speculation that cougars may re-establish in the Upper Great Lakes (UGL) region, USA. Recent work showed favorable cougar habitat in northeastern Minnesota, suggesting that the northern forested regions of Michigan and Wisconsin may have similar potential. Recolonization of cougars in the UGL states would have important ecological, social, and political impacts that will require effective management. METHODOLOGY/PRINCIPAL FINDINGS: Using Geographic Information Systems (GIS), we extended a cougar habitat model to Michigan and Wisconsin and incorporated primary prey densities to estimate the capacity of the region to support cougars. Results suggest that approximately 39% (>58,000 km2) of the study area could support cougars, and that there is potential for a population of approximately 500 or more animals. An exploratory validation of this habitat model revealed strong association with 58 verified cougar locations occurring in the study area between 2008 and 2013. CONCLUSIONS/SIGNIFICANCE: Spatially explicit information derived from this study could potentially lead to estimation of a viable population, delineation of possible cougar-human conflict areas, and the targeting of site locations for current monitoring. Understanding predator-prey interactions, interspecific competition, and human-wildlife relationships is becoming increasingly critical as top carnivores continue to recolonize the UGL region

    Extractive metallurgy of rare earths

    No full text

    The T2K experiment

    No full text
    corecore