142 research outputs found

    The LKB1 Tumor Suppressor as a Biomarker in Mouse and Human Tissues

    Get PDF
    Germline mutations in the LKB1 gene (also known as STK11) cause the Peutz-Jeghers Syndrome, and somatic loss of LKB1 has emerged as causal event in a wide range of human malignancies, including melanoma, lung cancer, and cervical cancer. The LKB1 protein is a serine-threonine kinase that phosphorylates AMP-activated protein kinase (AMPK) and other downstream targets. Conditional knockout studies in mouse models have consistently shown that LKB1 loss promotes a highly-metastatic phenotype in diverse tissues, and human studies have demonstrated a strong association between LKB1 inactivation and tumor recurrence. Furthermore, LKB1 deficiency confers sensitivity to distinct classes of anticancer drugs. The ability to reliably identify LKB1-deficient tumors is thus likely to have important prognostic and predictive implications. Previous research studies have employed polyclonal antibodies with limited success, and there is no widely-employed immunohistochemical assay for LKB1. Here we report an assay based on a rabbit monoclonal antibody that can reliably detect endogenous LKB1 protein (and its absence) in mouse and human formalin-fixed, paraffin-embedded tissues. LKB1 protein levels determined through this assay correlated strongly with AMPK phosphorylation both in mouse and human tumors, and with mRNA levels in human tumors. Our studies fully validate this immunohistochemical assay for LKB1 in paraffin-embedded formalin tissue sections. This assay should be broadly useful for research studies employing mouse models and also for the development of human tissue-based assays for LKB1 in diverse clinical settings

    Factors Associated with Mortality in Patients with COVID-19 from a Hospital in Northern Peru

    Get PDF
    We aimed to identify the factors associated with mortality in patients with COVID-19 from the hospitalization service of the Cayetano Heredia Hospital, Piura, Peru, from May to June 2020. A prospective study was conducted in hospitalized patients with a confirmed diagnosis of COVID-19 through serological and/or molecular reactive testing. The dependent variable was death due to COVID-19, and the independent variables were the epidemiological, clinical and laboratory characteristics of the patient. The chi-square test and the non-parametric Mann–Whitney U test were used, with a significance level of 5%. Of 301 patients with COVID-19, the majority of them were male (66.1%), and the mean age was 58.63 years. Of the patients analyzed, 41.3% of them died, 40.2% of them were obese and 59.8% of them had hepatic steatosis. The three most frequent signs/symptoms were dyspnea (90.03%), fatigue (90.03%) and a cough (84.72%). Being an older adult (p = 0.011), being hospitalized in the ICU (p = 0.001), overweight (p = 0.016), obese (p = 0.021) and having compromised consciousness (p = 0.039) and thrombocytopenia (p = 0.024) were associated with mortality due to COVID-19. Overall, the mortality rate due to COVID-19 was 41.3%. Having an older age, being hospitalized in the ICU, overweight, obese and having compromised consciousness and thrombocytopenia were positively associated with mortality in patients with COVID-19. These findings highlight the need to establish an adequate system of surveillance and epidemiological education in hospitals and communities in the event of new outbreaks, especially in rural and northern Peru

    A genome-wide association study follow-up suggests a possible role for PPARG in systemic sclerosis susceptibility

    Get PDF
    Introduction: A recent genome-wide association study (GWAS) comprising a French cohort of systemic sclerosis (SSc) reported several non-HLA single-nucleotide polymorphisms (SNPs) showing a nominal association in the discovery phase. We aimed to identify previously overlooked susceptibility variants by using a follow-up strategy.<p></p> Methods: Sixty-six non-HLA SNPs showing a P value <10-4 in the discovery phase of the French SSc GWAS were analyzed in the first step of this study, performing a meta-analysis that combined data from the two published SSc GWASs. A total of 2,921 SSc patients and 6,963 healthy controls were included in this first phase. Two SNPs, PPARG rs310746 and CHRNA9 rs6832151, were selected for genotyping in the replication cohort (1,068 SSc patients and 6,762 healthy controls) based on the results of the first step. Genotyping was performed by using TaqMan SNP genotyping assays. Results: We observed nominal associations for both PPARG rs310746 (PMH = 1.90 × 10-6, OR, 1.28) and CHRNA9 rs6832151 (PMH = 4.30 × 10-6, OR, 1.17) genetic variants with SSc in the first step of our study. In the replication phase, we observed a trend of association for PPARG rs310746 (P value = 0.066; OR, 1.17). The combined overall Mantel-Haenszel meta-analysis of all the cohorts included in the present study revealed that PPARG rs310746 remained associated with SSc with a nominal non-genome-wide significant P value (PMH = 5.00 × 10-7; OR, 1.25). No evidence of association was observed for CHRNA9 rs6832151 either in the replication phase or in the overall pooled analysis.<p></p> Conclusion: Our results suggest a role of PPARG gene in the development of SSc

    LKB1 loss promotes endometrial cancer progression via CCL2-dependent macrophage recruitment

    Get PDF
    Endometrial cancer is the most common gynecologic malignancy and the fourth most common malignancy in women. For most patients in whom the disease is confined to the uterus, treatment results in successful remission; however, there are no curative treatments for tumors that have progressed beyond the uterus. The serine/threonine kinase LKB1 has been identified as a potent suppressor of uterine cancer, but the biological modes of action of LKB1 in this context remain incompletely understood. Here, we have shown that LKB1 suppresses tumor progression by altering gene expression in the tumor microenvironment. We determined that LKB1 inactivation results in abnormal, cell-autonomous production of the inflammatory cytokine chemokine (C-C motif) ligand 2 (CCL2) within tumors, which leads to increased recruitment of macrophages with prominent tumor-promoting activities. Inactivation of Ccl2 in an Lkb1-driven mouse model of endometrial cancer slowed tumor progression and increased survival. In human primary endometrial cancers, loss of LKB1 protein was strongly associated with increased CCL2 expression by tumor cells as well as increased macrophage density in the tumor microenvironment. These data demonstrate that CCL2 is a potent effector of LKB1 loss in endometrial cancer, creating potential avenues for therapeutic opportunities

    Effects of long-term weekly iron and folic acid supplementation on lower genital tract infection - a double blind, randomised controlled trial in Burkina Faso

    Get PDF
    BACKGROUND: Provision of routine iron supplements to prevent anaemia could increase the risk for lower genital tract infections as virulence of some pathogens depends on iron availability. This trial in Burkina Faso assessed whether weekly periconceptional iron supplementation increased the risk of lower genital tract infection in young non-pregnant and pregnant women. METHODS: Genital tract infections were assessed within a double blind, controlled, non-inferiority trial of malaria risk among nulliparous women, randomised to receive either iron and folic acid or folic acid alone, weekly, under direct observation for 18 months. Women conceiving during this period entered the pregnancy cohort. End assessment (FIN) for women remaining non-pregnant was at 18 months. For the pregnancy cohort, end assessment was at the first scheduled antenatal visit (ANC1). Infection markers included Nugent scores for abnormal flora and bacterial vaginosis (BV), T. vaginalis PCR, vaginal microbiota, reported signs and symptoms, and antibiotic and anti-fungal prescriptions. Iron biomarkers were assessed at baseline, FIN and ANC1. Analysis compared outcomes by intention to treat and in iron replete/deficient categories. RESULTS: A total of 1954 women (mean 16.8 years) were followed and 478 (24.5%) became pregnant. Median supplement adherence was 79% (IQR 59-90%). Baseline BV prevalence was 12.3%. At FIN and ANC1 prevalence was 12.8% and 7.0%, respectively (P < 0.011). T. vaginalis prevalence was 4.9% at FIN and 12.9% at ANC1 (P < 0.001). BV and T. vaginalis prevalence and microbiota profiles did not differ at trial end-points. Iron-supplemented non-pregnant women received more antibiotic treatments for non-genital infections (P = 0.014; mainly gastrointestinal infections (P = 0.005), anti-fungal treatments for genital infections (P = 0.014) and analgesics (P = 0.008). Weekly iron did not significantly reduce iron deficiency prevalence. At baseline, iron-deficient women were more likely to have normal vaginal flora (P = 0.016). CONCLUSIONS: Periconceptional weekly iron supplementation of young women did not increase the risk of lower genital tract infections but did increase general morbidity in the non-pregnant cohort. Unabsorbed gut iron due to malaria could induce enteric infections, accounting for the increased administration of antibiotics and antifungals in the iron-supplemented arm. This finding reinforces concerns about routine iron supplementation in highly malarious areas

    An ultrahot Neptune in the Neptune desert

    Get PDF
    About 1 out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultrashort-period planet. All of the previously known ultrashort-period planets are either hot Jupiters, with sizes above 10 Earth radii (R⊕), or apparently rocky planets smaller than 2 R⊕. Such lack of planets of intermediate size (the ‘hot Neptune desert’) has been interpreted as the inability of low-mass planets to retain any hydrogen/helium (H/He) envelope in the face of strong stellar irradiation. Here we report the discovery of an ultrashort-period planet with a radius of 4.6 R⊕ and a mass of 29 M⊕, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite revealed transits of the bright Sun-like star LTT 9779 every 0.79 days. The planet’s mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0^(+2.7)_(−2.9)% of the total mass. With an equilibrium temperature around 2,000 K, it is unclear how this ‘ultrahot Neptune’ managed to retain such an envelope. Follow-up observations of the planet’s atmosphere to better understand its origin and physical nature will be facilitated by the star’s brightness (V_(mag) = 9.8)

    Association Study Among Candidate Genetic Polymorphisms and Chemotherapy-Related Severe Toxicity in Testicular Cancer Patients

    Get PDF
    Testicular cancer is one of the most commonly occurring malignant tumors in young men with fourfold higher rate of incidence and threefold higher mortality rates in Chile than the average global rates. Surgery is the initial line of treatment for testicular cancers, and is generally followed by chemotherapy, usually with combinations of bleomycin, etoposide, and cisplatin (BEP). However, the adverse effects of chemotherapy vary significantly among individuals; therefore, the present study explored the association of functionally significant allelic variations in genes related to the pharmacokinetics/pharmacodynamics of BEP and DNA repair enzymes with chemotherapy-induced toxicity in BEP-treated testicular cancer patients. We prospectively recruited 119 patients diagnosed with testicular cancer from 2010 to 2017. Genetic polymorphisms were analyzed using PCR and/or qPCR with TaqMan®probes. Toxicity was evaluated based on the Common Terminology Criteria for Adverse Events, v4.03. After univariate analyses to define more relevant genetic variants (p &lt; 0.2) and clinical conditions in relation to severe (III–IV) adverse drug reactions (ADRs), stepwise forward multivariate logistic regression analyses were performed. As expected, the main severe ADRs associated with the non-genetic variables were hematological (neutropenia and leukopenia). Univariate statistical analyses revealed that patients with ERCC2 rs13181 T/G and/or CYP3A4 rs2740574 A/G genotypes are more likely to develop alopecia; patients with ERCC2 rs238406 C/C genotype may develop leukopenia, and patients with GSTT1-null genotype could develop lymphocytopenia (III–IV). Patients with ERCC2 rs1799793 A/A were at risk of developing severe anemia. The BLMH rs1050565 G/G genotype was found to be associated with pain, and the GSTP1 G/G genotype was linked infection (p &lt; 0.05). Multivariate analysis showed an association between specific ERCC1/2 genotypes and cumulative dose of BEP drugs with the appearance of severe leukopenia and/or febrile neutropenia. Grades III–IV vomiting, nausea, and alopecia could be partly explained by the presence of specific ERCC1/2, MDR1, GSTP1, and BLMH genotypes (p &lt; 0.05). Hence, we provide evidence for the usefulness of pharmacogenetics as a tool for predicting severe ADRs in testicular cancer patients treated with BEP chemotherapy
    corecore