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Abstract

Germline mutations in the LKB1 gene (also known as STK11) cause the Peutz-Jeghers Syndrome, and somatic loss of LKB1
has emerged as causal event in a wide range of human malignancies, including melanoma, lung cancer, and cervical cancer.
The LKB1 protein is a serine-threonine kinase that phosphorylates AMP-activated protein kinase (AMPK) and other
downstream targets. Conditional knockout studies in mouse models have consistently shown that LKB1 loss promotes a
highly-metastatic phenotype in diverse tissues, and human studies have demonstrated a strong association between LKB1
inactivation and tumor recurrence. Furthermore, LKB1 deficiency confers sensitivity to distinct classes of anticancer drugs.
The ability to reliably identify LKB1-deficient tumors is thus likely to have important prognostic and predictive implications.
Previous research studies have employed polyclonal antibodies with limited success, and there is no widely-employed
immunohistochemical assay for LKB1. Here we report an assay based on a rabbit monoclonal antibody that can reliably
detect endogenous LKB1 protein (and its absence) in mouse and human formalin-fixed, paraffin-embedded tissues. LKB1
protein levels determined through this assay correlated strongly with AMPK phosphorylation both in mouse and human
tumors, and with mRNA levels in human tumors. Our studies fully validate this immunohistochemical assay for LKB1 in
paraffin-embedded formalin tissue sections. This assay should be broadly useful for research studies employing mouse
models and also for the development of human tissue-based assays for LKB1 in diverse clinical settings.
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Introduction

LKB1 (also known as STK11) has emerged as a major tumor

suppressor in diverse malignancies, particularly melanoma,

cervical cancer, and lung cancer [1–5]. The LKB1 gene encodes

a serine/threonine kinase that acts through a multitude of targets

to control diverse aspects of cell polarity, metabolism, and cell

growth [6,7]. Among these diverse substrates, the a catalytic

subunit of AMP-activated protein kinase (AMPK) is the best

established both in normal physiologic states and cancer. The

LKB1 protein, in association with the accessory proteins STRAD

and MO25, phosphorylates AMPKa at Thr172 in its activation

loop, leading to AMPK activation when AMPK is in the AMP-

bound state. AMPK directly phosphorylates TSC2 and raptor to

suppress signaling through mTOR pathway, and mTOR pathway

hyperactivity in the LKB1-deficient state is believed to account for

some, but not all of LKB1 tumor suppressor functions [8,9].

Considerable preclinical evidence exists that LKB1 deficiency

confers an unusually poor clinical outcome, sensitivity to distinct

classes of anticancer drugs, such as mTOR and SRC inhibitors,

and resistance to other drug classes, such as MEK inhibitors [10–

14]. It appears very likely that the ability to reliably identify LKB1-

deficient tumors would have ‘theranostic’ implications, and thus be

of clinical utility. However, no LKB1-based clinical assay has been

developed since the identification of LKB1 as a tumor suppressor

in 1998 [15]. In general, it has proven much more difficult to

develop useful clinical assays based on tumor suppressor inacti-

vation (e.g. deletion of RB or PTEN) than oncogene activation (e.g.

ERBB2 amplification, RAS/RAF activation). In large part this

relates to the much more expanded set of molecular alterations

that can inactivate a tumor suppressor (point mutation or

intragenic deletions throughout coding and cis-regulatory regions,

promoter hypermethylation, or diverse post-translational modifi-
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cations leading to protein instability) vs. the more limited set of

molecular alterations that define oncogene activation. This has

made it difficult to develop clinical assays with sufficient specificity

to reliably define states of tumor suppressor loss. For example,

even whole-gene sequencing has high false negative rates as it

misses several mechanisms that frequently inactivate tumor

suppressor proteins (e.g. degradation, promoter hypermethylation,

etc.).

Another practical consideration that further complicates such

efforts–particularly DNA-based assays– is that most tumors

contain abundant ‘‘contaminating’’ cells (e.g. lymphocytes,

tumor-associated stroma), which, in many cases, outnumber the

malignant cells harboring the actionable molecular alterations.

Specific gain-of-function/oncogenic mutations or gene amplifica-

tion events are readily detectable even in tumors with an abundant

background of such contaminating cells, whereas loss-of-function

mutations and deletions are more easily obscured.

In principle, the ability to reliably detect a tumor suppressor

protein in situ presents an attractive alternative, particularly as it

has the potential to capture most of the above mechanisms,

including post-translational mechanisms conferring protein insta-

bility. Several factors make LKB1 a particularly appealing

candidate for such efforts. First, intragenic deletions, insertions,

and splicing mutations (leading to frameshifts with alteration of

epitopes or complete absence of protein) are very common in

LKB1, as are larger intragenic deletions ranging from a single exon

up to 100 kb of genomic DNA [1]. Taken together, these types of

mutations occur in at least 50% of cases harboring LKB1

mutations [16]. Furthermore, some LKB1 point mutations result

in decreased protein stability [17]. However, identification of an

antibody with sufficient sensitivity and specificity suitable for in situ

detection is often difficult, and validation itself can be challenging

particularly if the tumor suppressor is ubiquitously expressed, as is

usually the case.

Although there are reports of LKB1 immunodetection in

specific research settings, no assay has been extensively validated,

proven robust, or widely adopted; e.g. across multiple cancer types

[11,18–22]. Here we describe a rabbit LKB1 monoclonal antibody

capable of detecting the endogenous protein in clinical material

(i.e. paraffin-embedded, formalin-fixed human tissue) with excel-

lent performance characteristics. Furthermore, this method is also

applicable to studies of LKB1 loss in murine preclinical model

systems. Additional studies demonstrated that assays based on this

approach can serve as the basis of clinical tests to identify tumors

characterized by LKB1 loss.

Materials and Methods

Ethics Statements
Mouse experiments were conducted with the approval of the

UT Southwestern Institutional Animal Care and Use Committee

and the Dana Farber Institutional Animal Care and Use

Figure 1. Validation of LKB1 rabbit monoclonal antibody D60C5 for immunohistochemistry in human and mouse paraffin-
embedded, formalin-fixed samples. A, Human cervical cancer cell lines. HeLa/Lkb1 = HeLa cells following transduction of lentivirus harboring a
human LKB1 cDNA inducible expression construct. Relative expression levels of Lkb1 protein are indicated in parentheses. B, Mouse tissues
(endometrium and lung) from animals harboring floxed alleles of Lkb1 following Cre-mediated recombination with Sprr2f-Cre (endometrium) or nasal-
instillation of Adeno-Cre virus (lung). Distinct Lkb1-null clones are indicated by dashed lines (endometrium) or arrows (lung). Bars = 10 mm for each
panel. Asterisks in the lung panels show invasive cancer cells subjacent to the dysplastic epithelium; these invasive cancer cells are also clearly Lkb1-
null. C, Percent of Lkb1-null cells in Sprr2f-Cre; Lkb1L/L female mice by immunohistochemistry at 3, 6, 12, and 20 weeks of age. Error bar = S.E.M. D,
Normal patterns of LKB1 protein in human lung and oviduct highlighting localization to the apical surface of ciliated cells (arrows). Note: in the
oviduct, ciliated epithelial cells (arrows) are interspersed among nonciliated cells. Bars = 10 mm in both panels.
doi:10.1371/journal.pone.0073449.g001

LKB1 Detection in Tissues
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Committee. For the human biomarker studies, study subjects were

accrued as part of a research protocol (requiring written informed

consent) approved by the University of North Carolina Office of

Human Research Ethics (see also below).

Mouse colonies, alleles, and Adeno-Cre virus instillation
Mice were housed in a pathogen-free animal facility in

microisolator cages and fed ad libitum on standard chow under

standard lighting conditions; experiments were conducted with the

approval of Institutional Animal Care and Use Committees.

Sprr2f-Cre; Lkb1L/L endometrial Lkb1-knockout mice were bred

and generated as previously described [10]. Breeding of LSL-

KrasG12V; Lkb1L/L mice and Adeno-Cre nasal instillation to effect

bronchial Cre-mediated recombination was conducted as previ-

ously described [2]. Mice were treated with Adeno-Cre at 8 weeks

of age and euthanized 10 weeks later.

Cell lines and preparation of cell blocks for
immunohistochemistry

Human cervical carcinoma cell lines HeLa [cat# CCL-2] and

CaSki [cat# CRL-1550] were purchased from the ATCC and

grown on plastic tissue culture plates in low glucose DMEM

(Gibco) +10% fetal bovine serum. Tet-On-LKB1-Hela cells (see

below) were grown in low glucose DMEM (Gibco) +10%

tetracycline-free fetal bovine serum (Clontech) + puromycin

(1 mg/ml) (Clontech) and G418 (400 mg/ml) (Gibco) media. To

overexpress human LKB1 in these cells a Lentivirus-Tet-On-

LKB1 plasmid was generated by cloning an LKB1 cDNA into the

BamHI-XbaI sites of the pLVX-Tight-Puro vector (Clontech).

The pLVX-Tight-Puro-LKB1 and the pLVX-Tet-On Advanced

vectors (Clontech) were co-transfected (1:1 ratio) with the Lenti-X

HT Packaging Mix kit (Clontech) into HEC293T cells. 24 hours

later, the transfection medium was replaced with fresh medium

and incubated at 37uC for 48 hours to produce lentivirus particles.

HeLa cells were infected with Lentivirus-Tet-On-LKB1 particles

for 24 hours with polybrene (4ug/ml) (Sigma-Aldrich H9268)

followed by replacement of the culture medium with fresh

complete culture medium. To induce LKB1 expression, doxycy-

cline (500 ng/ml) (Sigma-Aldrich) was added to the culture

medium and incubated at 37uC for 48 hours.

Confluent cells were harvested with a cell scraper without

trypsin/EDTA treatment and briefly spun down in a 15 ml

conical tube. The cell pellet was resuspended in 10% buffered

formalin and incubated at RT for 1 hour. The cells were washed

twice in PBS, resuspended in an equal volume of 2% low melting

temperature agarose (Cambrex), and cast in the wells of 96-well

plates. To simulate routine clinical pathology laboratory process-

ing of diagnostic tissue samples, the solidified plugs were subjected

to overnight fixation and paraffin-embedding, and cut into 5 m
sections.

Figure 2. Testing of another a-LKB1 monoclonal antibody (Ley 37D/G6). Tissue sections are from the uterus of a 6-week old Sprr2f-Cre;
Lkb1L/L female mouse. Rabbit monoclonal D60C5 readily distinguishes LKB1 positive from negative cells as shown previously. In contrast, the mouse
monoclonal antibody Ley 37D/G6 shows a homogeneous pattern throughout the endometrial epithelium (serial step section) and fails to distinguish
between LKB1 positive and negative cells. Size bars = 100 m for each panel.
doi:10.1371/journal.pone.0073449.g002

Figure 3. Validation of rabbit monoclonal antibody D60C5 by Western blotting. Positions of molecular weight standards (kilodaltons) are
shown to the left of each blot. A, HeLa cells harboring Tet-On construct inducible with doxycycline. B, Comprehensive uterine cancer cell line panel
(endometrial and cervical). Note: C4I harbors biallelic mutations of LKB1: a chromosomal deletion plus a point mutation that does not affect protein
levels [1]. CaSki, C33, and ME180 do not harbor LKB1 mutations [1]. Endo was derived from normal endocervical epithelium immortalized with HPV
E6/E7 [27].
doi:10.1371/journal.pone.0073449.g003

LKB1 Detection in Tissues
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Tissue processing, LKB1/pAMPKa (Thr172)
immunohistochemistry, and scoring of protein levels

Tissues were fixed in 10% formalin for 24 hours at 4o, washed

twice in PBS, then processed and embedded in paraffin. 5 m
sections were cut onto SuperFrost Plus slides (Fisher Scientific),

deparaffinized in xylene, and hydrated in a graded ethanol series.

Antigen retrieval was performed by gentle boiling in 10 mM

sodium citrate pH 6.0 followed by cooling at room temperature for

20 minutes. Endogenous peroxidase activity was quenched with

3% hydrogen peroxide in ddH20 for 30 minutes, followed by

blocking in 1% BSA (in PBS) for 15 minutes. The primary

antibodies used for immunohistochemistry were a-phospho-

AMPKa (Thr172) (1:50 dilution) (rabbit monoclonal 40H9, Cell

Signaling Technologies catalog #2535) and a concentrated

preparation of a-LKB1 rabbit monoclonal D60C5 (Cell Signaling

Technologies #3047BF [2.2 mg/ml in PBS]), used at dilutions of

1:10000 (for mouse tissues) and 1:500 (for human tissues) of ).

Note: this is available as a custom reagent from the manufacturer.

The ‘‘off-the-shelf’’ manufacturer’s preparation (catalog #3047) is

provided at a concentration optimized for Western blotting that is

too low for immunohistochemistry of human tissue sections; i.e.

this reagent (24 mg/ml, Cell Signaling Technologies #3047)

would require 1:6 dilution. We recommend that each laboratory

optimize antibody dilutions for every tissue. The other commercial

antibodies tested on tissue sections of our paraffin-embedded,

formalin fixed human cell line panel and Sprr2f-Cre; Lkb1L/L

mosaic uterus were: Proteintech rabbit polyclonal (catalog

#10746); Cell Signaling rabbit monoclonal 27D10 (cat#3050s);

EMD Millipore rabbit polyclonal (catalog# ST1092); EMD

Millipore mouse monoclonal 5C10 (catalog #05-832); Abcam

mouse monoclonal Ley37D/G6 (catalog #ab15095). These

antibodies were tested using the above immunodetection protocol

at titers ranging from 1:100 to 1:10000 with no evidence of specific

staining at any titer (see results for representative example-

Ley37D/G6).

ImmPRESS (Vector laboratories) was employed as a secondary

detection system, and applied for 30 minutes. For detection, DAB

(3,39-diaminobenzidine) (Dakocytomation) was used as a substrate-

chromogen. The processed slides were counterstained with

hematoxylin, air-dried, and mounted in Permount (Fisher

Scientific).

Lung cancer tissue cores in a triplicate set of tissue-microarrays

(TMAs) were used to collect immunohistochemistry data. Based

on the range of staining intensities observed on the TMAs,

investigators scored LKB1 protein expression on each slide with a

four category scale. The total signal within the cell was scored with

no distinction between subcellular localization patterns, since no

Figure 4. Scoring schema for LKB1 and pAMPKa (Thr172) expression in human lung cancer specimens. Tissues were paraffin-embedded
and fixed in formalin. Only staining in the malignant epithelial cells was scored. A, LKB1 immunohistochemistry and representative cases illustrating
histologic scores. B, pAMPKa (Thr172) immunohistochemistry and representative cases illustrating histologic scores. The dynamic range was
somewhat lower for pAMPKa (Thr172) vs. LKB1 but a wide range of staining intensities was also observed. Bar = 10 mm in all panels; all panels are at
same magnification.
doi:10.1371/journal.pone.0073449.g004

Table 1. Summary of patient data.

Variable Percent Count

Sex

Female 49% 60

Male 51% 63

Race

Asian 2% 2

Black 20% 24

White 79% 97

Ethnicity

Hispanic 1% 1

Not Hispanic 99% 122

Smoking Status

Current Smoker 44% 54

Former Smoker 48% 59

Never/Light Smoker 8% 10

Histology

Adenocarcinoma 56% 69

Squamous 36% 44

Large Cell 6% 7

Other 2% 3

Median Age at Diagnosis 65.8 years

doi:10.1371/journal.pone.0073449.t001

LKB1 Detection in Tissues
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obvious variation in subcellular expression patterns (e.g. in nuclear

vs. cytoplasmic localization) were noted. Only cancer cells were

scored; tumor stroma was not evaluated. Stromal staining was

evident in most cores, serving as a useful positive control and

reference point for staining intensity. The maximum score of the

triplicate set was selected as a single summary value for the entire

set. Patients were included in each analysis for which complete

clinical, genetic, and immunochemistry data was available.

Patient Clinical and Genomics Data
Study subjects were accrued as part of a tissue banking protocol

under Institutional Review Board approved protocols 90-0573 and

07-0120 at UNC. All patients were treated for non-small cell lung

cancer at UNC hospitals and clinical data was obtained by

retrospective chart review. All genomic data (gene expression

arrays, copy number array, and sequencing) from the current

study has been previously reported and are publically available

and are described in detail elsewhere [23–25]. Gene expression

data is from the Agilent 44 K platform to measure gene

expression, copy number data was obtained using the Affymetrix

Mapping 250 K Sty2 SNP Array and the Affymetrix Genome-

Wide Human SNP 6.0 Array. Sequencing of LKB1 has been

described in the prior report [24].

Statistical methods
Ordered logistic regression was employed for analysis in cases of

ordered categorical outcomes. For group comparisons the

Wilcoxon rank sum statistic was used. For differences in

categorical outcomes Fisher’s exact test was used. All analyses

and figures were performed using the R 2.15.2 software

environment (21).

Results and Discussion

To screen for a suitable antibody, we analyzed a panel of three

human cancer cell lines: HeLa (harbors biallelic LKB1 deletions,

expresses no protein), CaSki (LKB1 wild-type, expresses normal

levels of protein), and HeLa transduced with an LKB1 cDNA

(expresses abnormally high levels of protein). The cells were grown

under routine culture conditions, and subjected to formalin-

fixation and paraffin-embedding to simulate clinical conditions.

Five commercial (see methods) and several non-commercial a-

LKB1 antibodies were comprehensively tested, including two

rabbit monoclonals and two mouse monoclonals. Results for only

Figure 5. Validation of LKB1 antibody in situ assay in human lung tumor specimens. A, LKB1 protein expression vs. gene expression scores.
Researchers used the Agilent 44 K platform to measure gene expression. A positive relationship was observed (p,0.01). B, Box plots showing
comparison of gene expression scores in cases with confirmed LKB1 loss-of-function mutations vs. cases with no mutations. C, Protein expression by
mutation status providing visual comparison of cases with mutation vs. no mutation. The x-axis shows the percentage of cases per LKB1 score (i.e.
each side adds up to 1). The unsymmetrical shape indicates differences between the groups.
doi:10.1371/journal.pone.0073449.g005

Figure 6. Correlation between LKB1 and pAMPKa (Thr172)
scores. Heat map shows associations between LKB1 and pAMPKa
(Thr172) protein expression scores. Kendall’s tau provides a summary of
the correlation (tk = 0.49, p,0.001).
doi:10.1371/journal.pone.0073449.g006

Table 2. Coding mutations and LKB1 scores.

Mutation(s) LKB1 scores

exon 1: p.E70X 0 0 0

exon 2: p.Q123R 1 1 1

exon 4: p.Q170X 0 0 0

exon 4: splicing 0 0 0

exon 5: p.G242W 0 0 0

exon 5: splicing 1 0 0

exon 1: p.I88I exon 4: p.D194Y 0 0 0

doi:10.1371/journal.pone.0073449.t002

LKB1 Detection in Tissues
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one antibody (rabbit monoclonal clone D60C5) were consistent

with faithful binding to and detection of the LKB1 protein by

standard indirect immunohistochemistry (Fig. 1A). These analyses

are detailed below.

As previously described, by 12 weeks of age, Lkb1 loss drives

endometrial cancer in mice, while combined Lkb1 loss/Kras

activation drives the formation of lung cancer. The endometrial-

specific Sprr2f-Cre driver results in Cre-mediated recombination in

50–60% of endometrial epithelial cells by 6 weeks of age,

providing an ideal mosaic system for in vivo biomarker validation

[10]. In wild-type murine endometria, all epithelial cells stained

strongly and uniformly for Lkb1 (Fig. 1B). Stromal cells also

expressed the protein, albeit at lower levels. In sharp contrast,

however, Sprr2f-Cre; Lkb1L/L mice at 6 weeks of age exhibited a

strikingly mosaic pattern of Lkb1 expression, consistent with clonal

Cre-driven loss of Lkb1 and specific Lkb1 immunodetection. Of

note, under optimized conditions, background staining in the

Lkb1-null epithelial clones was minimal. Concordantly, pAMPKa
(Thr172) immunohistochemistry of serial sections provided com-

pelling evidence that 1) the pAMPKa (Thr172) antibody was also

reliable for in situ analyses and 2) AMPKa is indeed an Lkb1 target

hypophosphorylated in vivo following Lkb1 loss (Fig. 1B). At 12 and

20 weeks, 100% of Sprr2f-Cre; Lkb1L/L endometrial epithelial cells

were Lkb1-null, consistent with a selective growth advantage of the

Lkb1-null cells (Fig. 1C).

Similar results were obtained in an Lkb1/Kras adeno-Cre nasal

instillation model of lung carcinogenesis [2]. Whereas control

lungs showed uniform Lkb1 expression, mice treated with adeno-

Cre showed mosaic patterns of Lkb1 expression in the bronchial

epithelium that is subject to adenovirus infection. Furthermore,

while some Lkb1-deficient clones appeared morphologically

normal, most showed clear evidence of dysplasia and hyperplasia

(leftmost vs. two right lung panels, Fig. 1B), consistent with a causal

association between Lkb1 loss and dysplasia/tumor progression.

Invasive tumor cells in this model were always Lkb1-negative

(asterisks, Fig. 1B). Interestingly, in ciliated cells (lung bronchial

epithelium, oviductal epithelium), the LKB1 protein was promi-

nently expressed in the apical surface (i.e. in the cilia), consistent

with LKB1’s known roles in the establishment and maintenance of

epithelial polarity [26]. This asymmetric staining also serves as a

convenient positive control whereby these readily-available normal

human tissues can be used to confirm that immunostaining was

performed correctly (Fig. 1D). We conclude that this LKB1

antibody reliably detects the endogenous protein in diverse human

and mouse tissues, making it ideal for biomarker studies employing

both human cancer specimens (see below) and mouse cancer

models. For comparative purposes, a representative monoclonal

antibody (Ley37D/G6) for which we could not demonstrate

specific immunostaining in either the human cell line panel or in

Lkb1-mosaic mouse tissues is shown (Fig. 2). We note that our

inability to demonstrate specific immunostaining under our

experimental conditions does not invalidate the potential utility

of an antibody for specific experimental conditions, tissues, etc.,

that we did not test.

Western blotting was performed to further validate and test the

specificity of this antibody. In lysates obtained from unmodified

HeLa cells or HeLa cells harboring a Tet-on-LKB1 construct

prior to induction, no protein species were detected. Following

induction with doxycycline, however, a specific band correspond-

ing to LKB1 was detected (Fig. 3A). To further test the

performance of the antibody, it was also tested against lysates

derived from a comprehensive panel of uterine cell lines, both

endometrial and cervical (n = 22). No LKB1 protein was detected

in most cervical cancer cell lines (6/11), consistent with prior

reports that a high percentage of cervical cancers are characterized

by biallelic LKB1 inactivation. However, LKB1 was expressed in

some cervical cancer cell lines, as previously reported [1]. LKB1

protein was expressed in all endometrial cancer cell lines (n = 10),

although there was considerable variation in its expression levels

(Fig. 3B). Note that all of these images were minimally cropped

and no other species were detected. These results demonstrate that

the antibody is essentially monospecific with respect to LKB1

when tested against a diverse panel of human cell lines by Western

blotting. We conclude that this antibody displays exceptional

specificity for LKB1.

To test the utility of the antibody in clinical lung cancer

specimens, immunohistochemistry was performed on a triplicate

set of tissue-microarrays (TMAs) containing lung cancer tissue

cores. Patient demographics were representative of a typical

clinical population in the USA (Table 1). Interestingly, a very

broad range of LKB1 staining intensities were observed, showing

that LKB1 levels are highly variable in lung cancers, and hence

that LKB1 could serve as a discriminating biomarker. Based on

the range of staining intensities observed, a scoring scale (0–3) was

devised, where 0 = no appreciable staining; 1 = very low staining

but above background; 2 = strong staining; and 3 = very strong

staining. Each member of the triplicate set was scored, and the

maximum score was selected as a single summary value for the

entire set. In general, staining intensities in each tissue core were

uniform across the tumor cells (Fig. 4A). To further validate LKB1

as a potential biomarker, TMA slides were also stained for

pAMPKa (Thr172) and a similar scoring scheme was devised

(Fig. 4B). A total of 123 cases were scored for both markers

(Table 1).

We then assessed relationships between LKB1 protein expres-

sion in this TMA of human lung cancers and other genomic

measures performed on RNA/DNA prepared from fresh samples

of the same tumors. First, the LKB1 protein expression scores were

compared with RNA expression levels as determined by micro-

array profiling. Ordered logistic regression analysis demonstrated

a positive relationship between protein scores and gene expression

(n = 122; p = 0.002), observed as a positive upward slope on the

plot shown in Fig. 5A. This is further evidence that the LKB1

antibody can faithfully detect the protein in clinical samples.

Consistent with this interpretation, tumors with confirmed loss-of-

function mutations showed lower average gene expression scores

(p = 0.059, Wilcoxon rank sum test) (Fig. 5B). Likewise for protein

expression scores, statistical and visual comparison of the two

groups (mutation predicted to alter protein vs. no mutation,

Table 2) showed lower protein expression in the mutation group;

the plot is asymmetrical, and cases with mutations were skewed

towards ‘‘0’’ scores (Fig. 5C; Fisher’s Exact Test p = 0.04). Thus,

although post-translational mechanisms may also contribute to

LKB1 downregulation in tumors, statistically-significant relation-

ships were observed between LKB1 protein scores and expression

at the RNA level as well as mutational status. However, the

number of cases with LKB1 mutations was too small to assess

relationships between types of mutations (e.g. premature stop vs.

single amino acid substitutions) and LKB1 protein scores; such a

determination will require larger studies. Next, we assessed the

correlation between LKB1 and pAMPKa (Thr172) scores. A heat

map was used for a graphical representation of the association of

LKB1 and pAMPKa (Thr172) scores (Fig. 6). There was a

significant association among cases which were scored for both

markers (n = 122; Kendall’s tau = 0.54, p,0.001), strongly arguing

that both LKB1 and pAMPKa (Thr172) are interrelated

biomarkers useful for interrogating LKB1 status in human clinical

samples.
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In conclusion, we have shown through human cell lines and

mouse in vivo models that endogenous levels of the LKB1 protein

can be readily detected in multiple cell types in tissue sections.

Furthermore, this assay can discriminate between different levels

of LKB1 expression in human cancers. This assay, which employs

a monoclonal antibody, should thus prove highly reproducible and

easily adopted by diverse research or clinical laboratories for

diverse investigations of the potential of LKB1 as a predictor of

clinical outcomes in diverse human malignancies.
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