11 research outputs found

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Current Antibiotic Resistance Trends of Uropathogens in Central Europe: Survey from a Tertiary Hospital Urology Department 2011–2019

    No full text
    Monitoring of pathogen resistance profiles is necessary to guide empirical antibiotic therapy before culture and sensitivity results become available. The aim of this study was to describe current antibiotic resistance patterns of five most frequent causative uropathogens in a Department of Urology of a tertiary referral centre in Central Europe over a period of nine years. The Hospital Department of Clinical Microbiology database was used to extract data on all positive urine samples from inpatients in the Department of Urology between 2011 and 2019. Numbers of susceptible and resistant isolates per year were calculated for five most frequent uropathogens: Escherichia coli, Enterococcus spp., Klebsiella spp., Pseudomonas aeruginosa, and Proteus spp. Antimicrobial agents selected for the survey included: ampicillin, amoxicillin/clavulanic acid, piperacillin/tazobactam; cefuroxime, cefotaxime, ceftazidime and cefepime; ciprofloxacin and ofloxacin; gentamicin and amikacin; ertapenem, meropenem and imipenem; trimethoprim-sulfamethoxazole (co-trimoxazole), nitrofurantoin, colistin, and vancomycin. High resistance rates of Gram-negative uropathogens were demonstrated to most common antimicrobials, with statistically significant increasing or decreasing trends in some cases. No carbapenem-resistant Enterobacteriaceae were isolated. Vancomycin-resistant Enterococcus spp. strains were rare in our population

    Bladder Microbiota Are Associated with Clinical Conditions That Extend beyond the Urinary Tract

    No full text
    Background. Since the discovery of the human urinary microbiota (UM), alterations in microbial community composition have been associated with various genitourinary conditions. The aim of this exploratory study was to examine possible associations of UM with clinical conditions beyond the urinary tract and to test some of the conclusions from previous studies on UM. Methods. Catheterised urine samples from 87 men were collected prior to endoscopic urological interventions under anaesthesia. The composition of the bacterial community in urine was characterized using the hypervariable V4 region of the 16S rRNA gene. Samples from 58 patients yielded a sufficient amount of bacterial DNA for analysis. Alpha diversity measures (number of operational taxonomic units, ACE, iChao2, Shannon and Simpson indices) were compared with the Kruskal–Wallis test. Beta diversity (differences in microbial community composition) was assessed using non-metric dimensional scaling in combination with the Prevalence in Microbiome Analysis algorithm. Results. Differences in bacterial richness and diversity were observed for the following variables: age, diabetes mellitus, dyslipidemia, smoking status and single-dose preoperative antibiotics. Differences in microbial community composition were observed in the presence of chronic kidney disease, lower urinary tract symptoms and antibiotic prophylaxis. Conclusions. UM appears to be associated with certain clinical conditions, including those unrelated to the urinary tract. Further investigation is needed before conclusions can be drawn for diagnostics and treatment

    Investigation of Physical Properties of Polymer Composites Filled with Sheep Wool

    No full text
    Sheep farmers are currently facing an oversupply of wool and a lack of willing buyers. Due to low prices, sheep wool is often either dumped, burned, or sent to landfills, which are unsustainable and environmentally unfriendly practices. One potential solution is the utilization of sheep wool fibers in polymer composites. This paper focuses on the study of mechanical vibration damping properties, sound absorption, light transmission, electrical conductivity of epoxy (EP), polyurethane (PU), and polyester (PES) resins, each filled with three different concentrations of sheep wool (i.e., 0%, 3%, and 5% by weight). It can be concluded that the sheep wool content in the polymer composites significantly influenced their physical properties. The impact of light transmission through the tested sheep wool fiber-filled polymer composites on the quality of daylight in a reference room was also mathematically simulated using Wdls 5.0 software

    SoilTemp: A global database of near‐surface temperature

    Get PDF
    Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long‐term average thermal conditions at coarse spatial resolutions only. Hence, many climate‐forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold‐air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free‐air temperatures, microclimatic ground and near‐surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near‐surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes

    SoilTemp : a global database of near\u2010surface temperature

    No full text

    Global maps of soil temperature

    No full text
    corecore