19 research outputs found
Releasing The Anti-inflammatory Potential of Paralysed Skeletal Muscle: The Circulating Cytokine Response to Voluntary Upper-limb Exercise With/Without The Addition of Functional Electrical Stimulation (FES)-evoked Lower-limb Contractions
Skeletal muscle is a rich store of inflammatory mediating ‘myokines’. Following release from contracting muscle, the myokine interleukin-6 (IL-6) promotes a circulating anti-inflammatory environment associated with a reduced risk of cardiovascular disease (CVD). The metabolic and functional consequences of lower-limb paralysis, including the gain in relative adiposity and physical inactivity, result in a high prevalence of CVD in individuals with a spinal cord injury (SCI). However, the magnitude of any contraction-induced myokine response in this population may be limited by the small active muscle mass of the upper-limb. The combination of voluntary, upper-limb exercise and involuntary, functional electrical stimulation (FES)-evoked lower-limb cycling termed ‘hybrid’ exercise, may augment the acute myokine response by activating a greater volume of muscle mass than upper-limb exercise alone.
Five community-based individuals with motor complete, thoracic SCI (Age=44±15 years; Body mass=66.6±14.3 kg) and at least 3 months FES-evoked cycling experience volunteered to participate. On separate occasions, each participant performed 30 min of voluntary upper-limb, hand cycling exercise with (HYBRID) and without (ARM only) the addition of FES-evoked lower-limb cycling at a fixed workload. Blood samples were collected at rest, immediately post-exercise, and 1 and 2 h post-exercise. Plasma concentrations of IL-6, IL-10 and IL-1ra were subsequently determined by enzyme linked immunoassay.
Estimated energy expenditure was significantly higher in HYBRID (154±25 kcal) than ARM (132±21 kcal) (P=0.01; ES=0.90). Plasma IL-6 concentrations were significantly elevated following HYBRID, with values 1 h and 2 h post-exercise significantly higher than rest and immediately post-exercise (P\u3c0.04). A small (~50%) non-significant increase in IL-6 was present 1 h and 2 h post-exercise following ARM, however concentrations were significantly higher in HYBRID than ARM at the same time points (P\u3c0.02). Plasma IL-10 concentrations were unaffected by exercise in ARM. Although not attaining statistical significance, there was a tendency for IL-10 concentrations to rise in HYBRID, with an 85% increase in IL-10 concentrations at 2 h post exercise. Plasma IL-1ra was unaffected by exercise in both trials.
Initial findings suggest paralysed skeletal muscle releases the myokine IL-6 in response to electrically evoked contractions. Further, voluntary upper-limb exercise combined with involuntary lower-limb FES-evoked exercise had the tendency to elevate plasma concentrations of the anti-inflammatory cytokine IL-10; this effect was not present when performing arm exercise alone. Hybrid exercise may offer a method of maximising the anti-inflammatory potential of acute exercise in individuals with a SCI. The current findings require verification in a larger cohort
Postpartum psychiatric disorders
Pregnancy is a complex and vulnerable period that presents a number of challenges to women, including the development of postpartum psychiatric disorders (PPDs). These disorders can include postpartum depression and anxiety, which are relatively common, and the rare but more severe postpartum psychosis. In addition, other PPDs can include obsessive–compulsive disorder, post-traumatic stress disorder and eating disorders. The aetiology of PPDs is a complex interaction of psychological, social and biological factors, in addition to genetic and environmental factors. The goals of treating postpartum mental illness are reducing maternal symptoms and supporting maternal–child and family functioning. Women and their families should receive psychoeducation about the illness, including evidence-based discussions about the risks and benefits of each treatment option. Developing effective strategies in global settings that allow the delivery of targeted therapies to women with different clinical phenotypes and severities of PPDs is essential
Five insights from the Global Burden of Disease Study 2019
The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a rules-based synthesis of the available evidence on levels and trends in health outcomes, a diverse set of risk factors, and health system responses. GBD 2019 covered 204 countries and territories, as well as first administrative level disaggregations for 22 countries, from 1990 to 2019. Because GBD is highly standardised and comprehensive, spanning both fatal and non-fatal outcomes, and uses a mutually exclusive and collectively exhaustive list of hierarchical disease and injury causes, the study provides a powerful basis for detailed and broad insights on global health trends and emerging challenges. GBD 2019 incorporates data from 281 586 sources and provides more than 3.5 billion estimates of health outcome and health system measures of interest for global, national, and subnational policy dialogue. All GBD estimates are publicly available and adhere to the Guidelines on Accurate and Transparent Health Estimate Reporting. From this vast amount of information, five key insights that are important for health, social, and economic development strategies have been distilled. These insights are subject to the many limitations outlined in each of the component GBD capstone papers.Peer reviewe
Recommended from our members
The Structure and Origin of Switchbacks: Parker Solar Probe Observations
Switchbacks are rapid magnetic field reversals that last from seconds to hours. Current Parker Solar Probe (PSP) observations pose many open questions in regard to the nature of switchbacks. For example, are they stable as they propagate through the inner heliosphere, and how are they formed? In this work, we aim to investigate the structure and origin of switchbacks. In order to study the stability of switchbacks, we suppose the small-scale current sheets therein are generated by magnetic braiding, and they should work to stabilize the switchbacks. With more than 1000 switchbacks identified with PSP observations in seven encounters, we find many more current sheets inside than outside switchbacks, indicating that these microstructures should work to stabilize the S-shape structures of switchbacks. Additionally, we study the helium variations to trace the switchbacks to their origins. We find both helium-rich and helium-poor populations in switchbacks, implying that the switchbacks could originate from both closed and open magnetic field regions in the Sun. Moreover, we observe that the alpha-proton differential speeds also show complex variations as compared to the local Alfvén speed. The joint distributions of both parameters show that low helium abundance together with low differential speed is the dominant state in switchbacks. The presence of small-scale current sheets in switchbacks along with the helium features are in line with the hypothesis that switchbacks could originate from the Sun via interchange reconnection process. However, other formation mechanisms are not excluded