346 research outputs found

    Toxicokinetics of Ag in the terrestrial isopod Porcellionides pruinosus exposed to Ag NPs and AgNO3 via soil and food

    Get PDF
    Silver nanoparticles (Ag NPs) have been used in numerous consumer products and may enter the soil through the land application of biosolids. However, little is known about the relationship between Ag NP exposure and their bioavailability for soil organisms. This study aims at comparing the uptake and elimination kinetics of Ag upon exposures to different Ag forms (NPs and ionic Ag (as AgNO3)) in the isopod Porcellionides pruinosus. Isopods were exposed to contaminated Lufa 2.2 soil or alder leaves as food. Uptake and elimination rate constants for soil exposure did not significantly differ between Ag NPs and ionic Ag at 30 and 60 mg Ag/kg. For dietary exposure, the uptake rate constant was up to 5 times higher for Ag NPs than for AgNO3, but this was related to feeding activity and exposure concentrations, while no difference in the elimination rate constants was found. When comparing both routes, dietary exposure resulted in lower Ag uptake rate constants but elimination rate constants did not differ. A fast Ag uptake was observed from both routes and most of the Ag taken up seemed not to be eliminated. Synchrotron X-ray fluorescence showed Ag in the S-cells of the hepatopancreas, thus supporting the observations from the kinetic experiment (i.e. low elimination). In addition, our results show that isopods have an extremely high Ag accumulation capacity, suggesting the presence of an efficient Ag storage compartment

    Mercury accumulation from food decreases collembolans' growth

    Get PDF
    In the terrestrial environment, mercury (Hg) contamination can be originated from different inorganic and metal-organic sources, redistributed and transformed in soils. In the present study, the effects of contaminated food with environmentally relevant concentrations of Hg were evaluated in the soil-dwelling invertebrate Folsomia candida. Changes in growth rate and Hg bioaccumulation levels were observed at different concentrations of Hg in food, which can be complementary for data already available for reproduction and survival from standardized protocols. Collembolan growth was recorded every two days, and their growth rate along with a Von Bertalanffy's growth curve were derived showing that growth was dependent on Hg food concentration. Also, the final length of animals reflected the Hg concentration in food, with differences in all treatments comparing to non-exposed organisms. Toxicokinetic patterns from different Hg concentrations in food were not significantly different during the uptake phase, but differences were found in the depuration phase. Combining the two approaches, collembolans seem to invest their energy for depuration processes, neglecting other vital processes, such as growth. Also, contaminated food avoidance possibly occurred, thus decreasing their feeding and contaminant intake. Therefore, growth tests in collembolans can act as complementary tools to bioaccumulation and reproductive assays, towards a mechanistic understanding of how organisms use their energy upon contamination. Changes in growth rate, even at low and environmentally relevant concentrations, could be a warning signal when occurring in species with key roles in ecosystems. Also, this study highlights the importance of these complementary tests for a better and complete approach to risk assessment studies

    Observation of an Excited Bc+ State

    Get PDF
    Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+γ decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date

    Study of charmonium production in b -hadron decays and first evidence for the decay Bs0

    Get PDF
    Using decays to φ-meson pairs, the inclusive production of charmonium states in b-hadron decays is studied with pp collision data corresponding to an integrated luminosity of 3.0 fb−1, collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. Denoting byBC ≡ B(b → C X) × B(C → φφ) the inclusive branching fraction of a b hadron to a charmonium state C that decays into a pair of φ mesons, ratios RC1C2 ≡ BC1 /BC2 are determined as Rχc0ηc(1S) = 0.147 ± 0.023 ± 0.011, Rχc1ηc(1S) =0.073 ± 0.016 ± 0.006, Rχc2ηc(1S) = 0.081 ± 0.013 ± 0.005,Rχc1 χc0 = 0.50 ± 0.11 ± 0.01, Rχc2 χc0 = 0.56 ± 0.10 ± 0.01and Rηc(2S)ηc(1S) = 0.040 ± 0.011 ± 0.004. Here and below the first uncertainties are statistical and the second systematic.Upper limits at 90% confidence level for the inclusive production of X(3872), X(3915) and χc2(2P) states are obtained as RX(3872)χc1 < 0.34, RX(3915)χc0 < 0.12 andRχc2(2P)χc2 < 0.16. Differential cross-sections as a function of transverse momentum are measured for the ηc(1S) andχc states. The branching fraction of the decay B0s → φφφ is measured for the first time, B(B0s → φφφ) = (2.15±0.54±0.28±0.21B)×10−6. Here the third uncertainty is due to the branching fraction of the decay B0s → φφ, which is used for normalization. No evidence for intermediate resonances is seen. A preferentially transverse φ polarization is observed.The measurements allow the determination of the ratio of the branching fractions for the ηc(1S) decays to φφ and p p asB(ηc(1S)→ φφ)/B(ηc(1S)→ p p) = 1.79 ± 0.14 ± 0.32

    Bose-Einstein correlations of same-sign charged pions in the forward region in pp collisions at √s=7 TeV

    Get PDF
    Bose-Einstein correlations of same-sign charged pions, produced in protonproton collisions at a 7 TeV centre-of-mass energy, are studied using a data sample collected by the LHCb experiment. The signature for Bose-Einstein correlations is observed in the form of an enhancement of pairs of like-sign charged pions with small four-momentum difference squared. The charged-particle multiplicity dependence of the Bose-Einstein correlation parameters describing the correlation strength and the size of the emitting source is investigated, determining both the correlation radius and the chaoticity parameter. The measured correlation radius is found to increase as a function of increasing charged-particle multiplicity, while the chaoticity parameter is seen to decreas

    Measurement of the inelastic pp cross-section at a centre-of-mass energy of 13TeV

    Get PDF
    The cross-section for inelastic proton-proton collisions at a centre-of-mass energy of 13TeV is measured with the LHCb detector. The fiducial cross-section for inelastic interactions producing at least one prompt long-lived charged particle with momentum p &gt; 2 GeV/c in the pseudorapidity range 2 &lt; η &lt; 5 is determined to be ϭ acc = 62:2 ± 0:2 ± 2:5mb. The first uncertainty is the intrinsic systematic uncertainty of the measurement, the second is due to the uncertainty on the integrated luminosity. The statistical uncertainty is negligible. Extrapolation to full phase space yields the total inelastic proton-proton cross-section ϭ inel = 75:4 ± 3:0 ± 4:5mb, where the first uncertainty is experimental and the second due to the extrapolation. An updated value of the inelastic cross-section at a centre-of-mass energy of 7TeV is also reported

    Updated Determination of D⁰–D¯⁰Mixing and CP Violation Parameters with D⁰→K⁺π⁻ Decays

    Get PDF
    We report measurements of charm-mixing parameters based on the decay-time-dependent ratio of D⁰→K⁺π⁻ to D⁰→K⁻π⁺ rates. The analysis uses a data sample of proton-proton collisions corresponding to an integrated luminosity of 5.0  fb⁻¹ recorded by the LHCb experiment from 2011 through 2016. Assuming charge-parity (CP) symmetry, the mixing parameters are determined to be x′²=(3.9±2.7)×10⁻⁵, y′=(5.28±0.52)×10⁻³, and R[subscript D]=(3.454±0.031)×10⁻³. Without this assumption, the measurement is performed separately for D⁰ and D[over ¯]⁰ mesons, yielding a direct CP-violating asymmetry A[subscript D]=(-0.1±9.1)×10⁻³, and magnitude of the ratio of mixing parameters 1.00<|q/p|<1.35 at the 68.3% confidence level. All results include statistical and systematic uncertainties and improve significantly upon previous single-measurement determinations. No evidence for CP violation in charm mixing is observed

    Observation of D⁰ Meson Decays to Π⁺π⁻μ⁺μ⁻ and K⁺K⁻μ⁺μ⁻ Final States

    Get PDF
    The first observation of the D⁰→π⁺π⁻μ⁺μ⁻ and D⁰→K⁺K⁻μ⁺μ⁻ decays is reported using a sample of proton-proton collisions collected by LHCb at a center-of-mass energy of 8 TeV, and corresponding to 2  fb⁻¹ of integrated luminosity. The corresponding branching fractions are measured using as normalization the decay D⁰→K⁻π⁺[μ⁺μ⁻][subscript ρ⁰/ω], where the two muons are consistent with coming from the decay of a ρ⁰ or ω meson. The results are B(D⁰→π⁺π⁻μ⁺μ⁻)=(9.64±0.48±0.51±0.97)×10⁻⁷ and B(D⁰→K⁺K⁻μ⁺μ⁻)=(1.54±0.27±0.09±0.16)×10⁻⁷, where the uncertainties are statistical, systematic, and due to the limited knowledge of the normalization branching fraction. The dependence of the branching fraction on the dimuon mass is also investigated
    corecore