1,890 research outputs found

    Fossil and genetic evidence for the polyphyletic nature of the planktonic foraminifera ‘Globigerinoides’, and description of the new genus Trilobatus

    Get PDF
    Planktonic foraminifera are one of the most abundant and diverse protists in the oceans. Their utility as paleo proxies requires rigorous taxonomy and comparison with living and genetically related counterparts. We merge genetic and fossil evidence of “Globigerinoides”, characterized by supplementary apertures on spiral side, in a new approach to trace their “total evidence phylogeny” since their first appearance in the latest Paleogene. Combined fossil and molecular genetic data indicate that this genus, as traditionally understood, is polyphyletic. Both datasets indicate the existence of two distinct lineages that evolved independently. One group includes “Globigerinoides” trilobus and its descendants, the extant “Globigerinoides” sacculifer, Orbulina universa and Sphaeroidinella dehiscens. The second group includes the Globigerinoides ruber clade with the extant G. conglobatus and G. elongatus and ancestors. In molecular phylogenies, the trilobus group is not the sister taxon of the ruber group. The ruber group clusters consistently together with the modern Globoturborotalita rubescens as a sister taxon. The re-analysis of the fossil record indicates that the first “Globigerinoides” in the late Oligocene are ancestral to the trilobus group, whereas the ruber group first appeared at the base of the Miocene with representatives distinct from the trilobus group. Therefore, polyphyly of the genus "Globigerinoides" as currently defined can only be avoided either by broadening the genus concept to include G. rubescens and a large number of fossil species without supplementary apertures, or if the trilobus group is assigned to a separate genus. Since the former is not feasible due to the lack of a clear diagnosis for such a broad genus, we erect a new genus Trilobatus for the trilobus group (type species Globigerina triloba Reuss) and amend Globoturborotalita and Globigerinoides to clarify morphology and wall textures of these genera. In the new concept, Trilobatus n. gen. is paraphyletic and gave rise to the Praeorbulina / Orbulina and Sphaeroidinellopsis / Sphaeroidinella lineages

    Cardiac outcomes in severe acute respiratory syndrome coronavirus-2-associated multisystem inflammatory syndrome at a tertiary paediatric hospital

    Get PDF
    INTRODUCTION: We describe a cohort of children referred with multisystem inflammatory syndrome in children associated with severe acute respiratory syndrome coronavirus 2 and compare this cohort with a 2019 cohort of children with Kawasaki disease. METHODS: We conducted a retrospective cohort study of 2019 and 2020 referrals to the inflammatory cardiology service at Great Ormond Street Hospital for Children. We compared cardiac and inflammatory parameters of a sub-section of the 2020 cohort who presented with reduced left ventricular ejection fraction with the remainder of the cohort. RESULTS: Referrals significantly increased between February and June 2020 compared to 2019 (19.8/30 days versus 3.9/30 days). Frequency of coronary artery aneurysms (11/79 (13.9%) versus 7/47 (14.9%)) or severe coronary artery aneurysms (6/79 (7.6%) versus 3/47 (6.4%)) was similar between 2020 and 2019, respectively. The 2020 cohort was older (median age 9.07 years versus 2.38 years), more likely to be of Black, Asian, or other minority ethnic group (60/76 (78.9%) versus 25/42 (59.5%)), and more likely to require inotropic support (22 (27.5%) versus 0 (0%)). Even children with significantly reduced left ventricular ejection fraction demonstrated complete recovery of cardiac function within 10 days (mean 5.25 days ± 2.7). DISCUSSION: We observed complete recovery of myocardial dysfunction and an overall low rate of permanent coronary sequelae, indicating that the majority of children with multisystem inflammatory syndrome in children are unlikely to encounter long-term cardiac morbidity. Although the frequency of myocardial dysfunction and inotropic support requirement is not consistent with a diagnosis of Kawasaki disease, the frequency of coronary artery abnormalities and severe coronary artery abnormalities suggests a degree of phenotypic overlap

    Precipitation from Space: Advancing Earth System Science

    Get PDF
    Of the three primary sources of spatially contiguous precipitation observations (surface networks, ground-based radar, and satellite-based radar/radiometers), only the last is a viable source over ocean and much of the Earth's land. As recently as 15 years ago, users needing quantitative detail of precipitation on anything under a monthly time scale relied upon products derived from geostationary satellite thermal infrared (IR) indices. The Special Sensor Microwave Imager (SSMI) passive microwave (PMW) imagers originated in 1987 and continue today with the SSMI sounder (SSMIS) sensor. The fortunate longevity of the joint National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) Tropical Rainfall Measuring Mission (TRMM) is providing the environmental science community a nearly unbroken data record (as of April 2012, over 14 years) of tropical and sub-tropical precipitation processes. TRMM was originally conceived in the mid-1980s as a climate mission with relatively modest goals, including monthly averaged precipitation. TRMM data were quickly exploited for model data assimilation and, beginning in 1999 with the availability of near real time data, for tropical cyclone warnings. To overcome the intermittently spaced revisit from these and other low Earth-orbiting satellites, many methods to merge PMW-based precipitation data and geostationary satellite observations have been developed, such as the TRMM Multisatellite Precipitation Product and the Climate Prediction Center (CPC) morphing method (CMORPH. The purpose of this article is not to provide a survey or assessment of these and other satellite-based precipitation datasets, which are well summarized in several recent articles. Rather, the intent is to demonstrate how the availability and continuity of satellite-based precipitation data records is transforming the ways that scientific and societal issues related to precipitation are addressed, in ways that would not be otherwise possible. These developments have taken place in parallel with the growth of an increasingly interconnected scientific environment. Scientists from different disciplines can easily interact with each other via information and materials they encounter online, and collaborate remotely without ever meeting each other in person. Likewise, these precipitation datasets are quickly and easily available via various data portals and are widely used. Within the framework of the NASA/JAXA Global Precipitation Measurement (GPM mission, these applications will become increasingly interconnected. We emphasize that precipitation observations by themselves provide an incomplete picture of the state of the atmosphere. For example, it is unlikely that a richer understanding of the global water cycle will be possible by standalone missions and algorithms, but must also involve some component of data, where model analyses of the physical state are constrained alongside multiple observations (e.g., precipitation, evaporation, radiation). The next section provides examples extracted from the many applications that use various high-resolution precipitation products. The final section summarizes the future system for global precipitation processing

    The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera

    Get PDF
    © 2016 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. The attached file is the published version of the article

    WiseEye: next generation expandable and programmable camera trap platform for wildlife research

    Get PDF
    Funding: The work was supported by the RCUK Digital Economy programme to the dot.rural Digital Economy Hub; award reference: EP/G066051/1. The work of S. Newey and RJI was part funded by the Scottish Government's Rural and Environment Science and Analytical Services (RESAS). Details published as an Open Source Toolkit, PLOS Journals at: http://dx.doi.org/10.1371/journal.pone.0169758Peer reviewedPublisher PD

    Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities.

    Get PDF
    The mammary epithelium depends on specific lineages and their stem and progenitor function to accommodate hormone-triggered physiological demands in the adult female. Perturbations of these lineages underpin breast cancer risk, yet our understanding of normal mammary cell composition is incomplete. Here, we build a multimodal resource for the adult gland through comprehensive profiling of primary cell epigenomes, transcriptomes, and proteomes. We define systems-level relationships between chromatin-DNA-RNA-protein states, identify lineage-specific DNA methylation of transcription factor binding sites, and pinpoint proteins underlying progesterone responsiveness. Comparative proteomics of estrogen and progesterone receptor-positive and -negative cell populations, extensive target validation, and drug testing lead to discovery of stem and progenitor cell vulnerabilities. Top epigenetic drugs exert cytostatic effects; prevent adult mammary cell expansion, clonogenicity, and mammopoiesis; and deplete stem cell frequency. Select drugs also abrogate human breast progenitor cell activity in normal and high-risk patient samples. This integrative computational and functional study provides fundamental insight into mammary lineage and stem cell biology

    Coupling of equatorial Atlantic surface stratification to glacial shifts in the tropical rainbelt

    Get PDF
    The modern state of the Atlantic meridional overturning circulation promotes a northerly maximum of tropical rainfall associated with the Intertropical Convergence Zone (ITCZ). For continental regions, abrupt millennial–scale meridional shifts of this rainbelt are well documented, but the behavior of its oceanic counterpart is unclear due the lack of a robust proxy and high temporal resolution records. Here we show that the Atlantic ITCZ leaves a distinct signature in planktonic foraminifera assemblages. We applied this proxy to investigate the history of the Atlantic ITCZ for the last 30,000 years based on two high temporal resolution records from the western Atlantic Ocean. Our reconstruction indicates that the shallowest mixed layer associated with the Atlantic ITCZ unambiguously shifted meridionally in response to changes in the strength of the Atlantic meridional overturning with a southward displacement during Heinrich Stadials 2–1 and the Younger Dryas. We conclude that the Atlantic ITCZ was located at ca. 1°S (ca. 5° to the south of its modern annual mean position) during Heinrich Stadial 1. This supports a previous hypothesis, which postulates a southern hemisphere position of the oceanic ITCZ during climatic states with substantially reduced or absent cross-equatorial oceanic meridional heat transport

    Attributes of mesoscale convective systems at the land-ocean transition in Senegal during NASA African Monsoon Multidisciplinary Analyses

    Get PDF
    In this study we investigate the development of a mesoscale convective system (MCS) as it moved from West Africa to the Atlantic Ocean on 31 August 2006. We document surface and atmospheric conditions preceding and following the MCS, particularly near the coast. These analyses are used to evaluate how thermodynamic and microphysical gradients influence storms as they move from continental to maritime environments. To achieve these goals, we employ observations from NASA African Monsoon Multidisciplinary Analyses (NAMMA) from the NASA S band polarimetric Doppler radar, a meteorological flux tower, upper-air soundings, and rain gauges. We show that the MCS maintained a convective leading edge and trailing stratiform region as it propagated from land to ocean. The initial strength and organization of the MCS were associated with favorable antecedent conditions in the continental lower atmosphere, including high specific humidity (18 g kg ), temperatures (300 K), and wind shear. While transitioning, the convective and stratiform regions became weaker and disorganized. Such storm changes were linked to less favorable thermodynamic, dynamic, and microphysical conditions over ocean. To address whether storms in different life-cycle phases exhibited similar features, a composite analysis of major NAMMA events was performed. This analysis revealed an even stronger shift to lower reflectivity values over ocean. These findings support the hypothesis that favorable thermodynamic conditions over the coast are a prerequisite to ensuring that MCSs do not dissipate at the continental-maritime transition, particularly due to strong gradients that can weaken West African storms moving from land to ocean
    • 

    corecore