182 research outputs found

    Arc Phenomena in low-voltage current limiting circuit breakers

    Get PDF
    Circuit breakers are an important safety feature in most electrical circuits, and they act to prevent excessive currents caused by short circuits, for example. Low-voltage current limiting circuit breakers are activated by a trip solenoid when a critical current is exceeded. The solenoid moves two contacts apart to break the circuit. However, as soon as the contacts are separated an electric arc forms between them, ionising the air in the gap, increasing the electrical conductivity of air to that of the hot plasma that forms, and current continues to flow. The currents involved may be as large as 80,000 amperes. Critical to the success of the circuit breaker is that it is designed to cause the arc to move away from the contacts, into a widening wedge-shaped region. This lengthens the arc, and then moves it onto a series of separator plates called an arc divider or splitter. The arc divider raises the voltage required to sustain the arcs across it, above the voltage that is provided across the breaker, so that the circuit is broken and the arcing dies away. This entire process occurs in milliseconds, and is usually associated with a sound like an explosion and a bright ash from the arc. Parts of the contacts and the arc divider may melt and/or vapourise. The question to be addressed by the Study Group was to mathematically model the arc motion and extinction, with the overall aim of an improved understanding that would help the design of a better circuit breaker. Further discussion indicated that two key mechanisms are believed to contribute to the movement of the arc away from the contacts, one being self-magnetism (where the magnetic field associated with the arc and surrounding circuitry acts to push it towards the arc divider), and the other being air flow (where expansion of air combined with the design of the chamber enclosing the arc causes gas flow towards the arc divider). Further discussion also indicated that a key aspect of circuit breaker design was that it is desirable to have as fast a quenching of the arc as possible, that is, the faster the circuit breaker can act to stop current flow, the better. The relative importance of magnetic and air pressure effects on quenching speed is of central interest to circuit design

    A calcium/calmodulin-dependent protein kinase from mammalian brain that phosphorylates Synapsin I: partial purification and characterization

    Get PDF
    A calcium/calmodulin-dependent protein kinase, which phosphorylates a synaptic vesicle-associated protein designated Synapsin I, has been shown to be present in both soluble and particulate fractions of rat brain homogenates. In the present study, the particulate activity was solubilized by washing with a low ionic strength solution, and the enzymes from the two fractions were partially purified by ion exchange chromatography and calmodulin-Sepharose affinity chromatography. By each of several criteria, the partially purified enzymes from the two sources were indistinguishable. These criteria included specificity for various substrate proteins, concentration dependence of activation by calcium and calmodulin, pH dependence, and apparent affinities for the substrates Synapsin I and ATP. The mild conditions that released the particulate enzyme indicated that it was not tightly bound to the membrane and suggested that it may exist in a dynamic equilibrium between soluble and particulate-bound states. The partially purified enzyme preparations from both the soluble and particulate fractions contained three proteins that were phosphorylated in the presence of calcium and calmodulin, a 50-kilodalton (Kd) protein and two proteins in the 60-Kd region. When compared by phosphopeptide mapping and two-dimensional gel electrophoresis, the proteins were indistinguishable from three proteins of corresponding molecular weights that were shown by Schulman and Greengard (Schulman, H., and P. Greengard (1978) Nature 271: 478-479) to be prominent substrates for calcium/calmodulin-dependent protein kinase in a crude particulate preparation from rat brain. The 50-Kd substrate was the major Coomassie blue staining protein in both partially purified enzyme preparations. The peak of this protein coincided with that of enzyme activity during DEAE-cellulose and calmodulin-Sepharose chromatography. These results suggest that the 50-Kd phosphoprotein may be an autophosphorylatable subunit of the Synapsin I Kinase or may exist in a complex with it

    Identification of molecular markers of delayed graft function based on the regulation of biological ageing

    Get PDF
    Introduction: Delayed graft function is a prevalent clinical problem in renal transplantation for which there is no objective system to predict occurrence in advance. It can result in a significant increase in the necessity for hospitalisation post-transplant and is a significant risk factor for other post-transplant complications. Methodology: The importance of microRNAs (miRNAs), a specific subclass of small RNA, have been clearly demonstrated to influence many pathways in health and disease. To investigate the influence of miRNAs on renal allograft performance post-transplant, the expression of a panel of miRNAs in pre-transplant renal biopsies was measured using qPCR. Expression was then related to clinical parameters and outcomes in two independent renal transplant cohorts. Results: Here we demonstrate, in two independent cohorts of pre-implantation human renal allograft biopsies, that a novel pre-transplant renal performance scoring system (GRPSS), can determine the occurrence of DGF with a high sensitivity (>90%) and specificity (>60%) for donor allografts pre-transplant, using just three senescence associated microRNAs combined with donor age and type of organ donation. Conclusion: These results demonstrate a relationship between pre-transplant microRNA expression levels, cellular biological ageing pathways and clinical outcomes for renal transplantation. They provide for a simple, rapid quantitative molecular pre-transplant assay to determine post-transplant allograft function and scope for future intervention. Furthermore, these results demonstrate the involvement of senescence pathways in ischaemic injury during the organ transplantation process and an indication of accelerated bio-ageing as a consequence of both warm and cold ischaemia

    The role of epigenetics in renal ageing

    Get PDF
    An ability to separate natural ageing processes from processes specific to morbidities is required to understand the heterogeneity of age-related organ dysfunction. Mechanistic insight into how epigenetic factors regulate ageing throughout the life course, linked to a decline in renal function with ageing, is already proving to be of value in the analyses of clinical and epidemiological cohorts. Noncoding RNAs provide epigenetic regulatory circuits within the kidney, which reciprocally interact with DNA methylation processes, histone modification and chromatin. These interactions have been demonstrated to reflect the biological age and function of renal allografts. Epigenetic factors control gene expression and activity in response to environmental perturbations. They also have roles in highly conserved signalling pathways that modulate ageing, including the mTOR and insulin/insulin-like growth factor signalling pathways, and regulation of sirtuin activity. Nutrition, the gut microbiota, inflammation and environmental factors, including psychosocial and lifestyle stresses, provide potential mechanistic links between the epigenetic landscape of ageing and renal dysfunction. Approaches to modify the renal epigenome via nutritional intervention, targeting the methylome or targeting chromatin seem eminently feasible, although caution is merited owing to the potential for intergenerational and transgenerational effects

    An Ontological Approach to Inform HMI Designs for Minimizing Driver Distractions with ADAS

    Get PDF
    ADAS (Advanced Driver Assistance Systems) are in-vehicle systems designed to enhance driving safety and efficiency as well as comfort for drivers in the driving process. Recent studies have noticed that when Human Machine Interface (HMI) is not designed properly, an ADAS can cause distraction which would affect its usage and even lead to safety issues. Current understanding of these issues is limited to the context-dependent nature of such systems. This paper reports the development of a holistic conceptualisation of how drivers interact with ADAS and how such interaction could lead to potential distraction. This is done taking an ontological approach to contextualise the potential distraction, driving tasks and user interactions centred on the use of ADAS. Example scenarios are also given to demonstrate how the developed ontology can be used to deduce rules for identifying distraction from ADAS and informing future designs

    Convergent genetic and expression data implicate immunity in Alzheimer's disease

    Get PDF
    Background Late–onset Alzheimer's disease (AD) is heritable with 20 genes showing genome wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease we extended these genetic data in a pathway analysis. Methods The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain. Results ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (p = 3.27×10-12 after multiple testing correction for pathways), regulation of endocytosis (p = 1.31×10-11), cholesterol transport (p = 2.96 × 10-9) and proteasome-ubiquitin activity (p = 1.34×10-6). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected p 0.002 – 0.05). Conclusions The immune response, regulation of endocytosis, cholesterol transport and protein ubiquitination represent prime targets for AD therapeutics

    Genetic Evidence Implicates the Immune System and Cholesterol Metabolism in the Aetiology of Alzheimer's Disease

    Get PDF
    Background 1Late Onset Alzheimer's disease (LOAD) is the leading cause of dementia. Recent large genome-wide association studies (GWAS) identified the first strongly supported LOAD susceptibility genes since the discovery of the involvement of APOE in the early 1990s. We have now exploited these GWAS datasets to uncover key LOAD pathophysiological processes. Methodology We applied a recently developed tool for mining GWAS data for biologically meaningful information to a LOAD GWAS dataset. The principal findings were then tested in an independent GWAS dataset. Principal Findings We found a significant overrepresentation of association signals in pathways related to cholesterol metabolism and the immune response in both of the two largest genome-wide association studies for LOAD. Significance Processes related to cholesterol metabolism and the innate immune response have previously been implicated by pathological and epidemiological studies of Alzheimer's disease, but it has been unclear whether those findings reflected primary aetiological events or consequences of the disease process. Our independent evidence from two large studies now demonstrates that these processes are aetiologically relevant, and suggests that they may be suitable targets for novel and existing therapeutic approaches
    • …
    corecore