257 research outputs found

    The prognostic role of intragenic copy number breakpoints and identification of novel fusion genes in paediatric high grade glioma

    Get PDF
    BACKGROUND: Paediatric high grade glioma (pHGG) is a distinct biological entity to histologically similar tumours arising in older adults, and has differing copy number profiles and driver genetic alterations. As functionally important intragenic copy number aberrations (iCNA) and fusion genes begin to be identified in adult HGG, the same has not yet been done in the childhood setting. We applied an iCNA algorithm to our previously published dataset of DNA copy number profiling in pHGG with a view to identify novel intragenic breakpoints. RESULTS: We report a series of 288 iCNA events in pHGG, with the presence of intragenic breakpoints itself a negative prognostic factor. We identified an increased number of iCNA in older children compared to infants, and increased iCNA in H3F3A K27M mutant tumours compared to G34R/V and wild-type. We observed numerous gene disruptions by iCNA due to both deletions and amplifications, targeting known HGG-associated genes such as RB1 and NF1, putative tumour suppressors such as FAF1 and KIDINS220, and novel candidates such as PTPRE and KCND2. We further identified two novel fusion genes in pHGG - CSGALNACT2:RET and the complex fusion DHX57:TMEM178:MAP4K3. The latter was sequence-validated and appears to be an activating event in pHGG. CONCLUSIONS: These data expand upon our understanding of the genomic events driving these tumours and represent novel targets for therapeutic intervention in these poor prognosis cancers of childhood.We are grateful for support from the Rosetrees Trust, the Brain Tumour Charity and Fundacao para a Ciencia e Tecnologia, Portugal (PhD Studentship SFRH/BD/33473/2008). DC, AM, LB and CJ acknowledge NHS funding to the Biomedical Research Centre

    SN 2021fxy: Mid-Ultraviolet Flux Suppression is a Common Feature of Type Ia Supernovae

    Full text link
    We present ultraviolet (UV) to near-infrared (NIR) observations and analysis of the nearby Type Ia supernova SN 2021fxy. Our observations include UV photometry from Swift/UVOT, UV spectroscopy from HST/STIS, and high-cadence optical photometry with the Swope 1-m telescope capturing intra-night rises during the early light curve. Early Bβˆ’VB-V colours show SN 2021fxy is the first "shallow-silicon" (SS) SN Ia to follow a red-to-blue evolution, compared to other SS objects which show blue colours from the earliest observations. Comparisons to other spectroscopically normal SNe Ia with HST UV spectra reveal SN 2021fxy is one of several SNe Ia with flux suppression in the mid-UV. These SNe also show blue-shifted mid-UV spectral features and strong high-velocity Ca II features. One possible origin of this mid-UV suppression is the increased effective opacity in the UV due to increased line blanketing from high velocity material, but differences in the explosion mechanism cannot be ruled out. Among SNe Ia with mid-UV suppression, SNe 2021fxy and 2017erp show substantial similarities in their optical properties despite belonging to different Branch subgroups, and UV flux differences of the same order as those found between SNe 2011fe and 2011by. Differential comparisons to multiple sets of synthetic SN Ia UV spectra reveal this UV flux difference likely originates from a luminosity difference between SNe 2021fxy and 2017erp, and not differing progenitor metallicities as suggested for SNe 2011by and 2011fe. These comparisons illustrate the complicated nature of UV spectral formation, and the need for more UV spectra to determine the physical source of SNe Ia UV diversity.Comment: 26 pages, 19 figures, 9 tables; submitted to MNRAS, posted after receiving referee comment

    CD105 (Endoglin) exerts prognostic effects via its role in the microvascular niche of paediatric high grade glioma

    Get PDF
    Paediatric high grade glioma (pHGG) (World Health Organisation astrocytoma grades III and IV) remains poor prognosis tumours, with a median survival of only 15Β months following diagnosis. Current investigation of anti-angiogenic strategies has focused on adult glioblastoma multiforme (GBM) with phase III trials targeting vascular endothelial growth factor continuing. In this study we investigated whether the degree of vascularity correlated with prognosis in a large cohort of pHGG (nΒ =Β 150) and whether different vessel markers carried different prognostic value. We found that CD105 (endoglin) had a strongly significant association with poor prognosis on multivariate analysis (pΒ =Β <0.001). Supervised hierarchical clustering of genome wide gene expression data identified 13 genes associated with differential degrees of vascularity in the cohort. The novel angiogenesis-associated genes identified in this analysis (including MIPOL-1 and ENPP5) were validated by realtime polymerase chain reaction. We also demonstrate that CD105 positive blood vessels associate with CD133 positive tumour cells and that a proportion of CD105 positive vessel cells demonstrates co-positivity for CD133, suggesting that the recently described phenomenon of vasculogenic mimicry occurs in pHGG. Together, the data suggest that targeting angiogenesis, and in particular CD105, is a valid therapeutic strategy for pHGG

    Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma.

    Get PDF
    We collated data from 157 unpublished cases of pediatric high-grade glioma and diffuse intrinsic pontine glioma and 20 publicly available datasets in an integrated analysis of >1,000 cases. We identified co-segregating mutations in histone-mutant subgroups including loss of FBXW7 in H3.3G34R/V, TOP3A rearrangements in H3.3K27M, and BCOR mutations in H3.1K27M. Histone wild-type subgroups are refined by the presence of key oncogenic events or methylation profiles more closely resembling lower-grade tumors. Genomic aberrations increase with age, highlighting the infant population as biologically and clinically distinct. Uncommon pathway dysregulation is seen in small subsets of tumors, further defining the molecular diversity of the disease, opening up avenues for biological study and providing a basis for functionally defined future treatment stratification

    Field template-based design and biological evaluation of new sphingosine kinase 1 inhibitors

    Get PDF
    Purpose: Sphingosine kinase 1 (SK1) is a protooncogenic enzyme expressed in many human tumours and is associated with chemoresistance and poor prognosis. It is a potent therapy target and its inhibition chemosensitises solid tumours. Despite recent advances in SK1 inhibitors synthesis and validation, their clinical safety and chemosensitising options are not well described. In this study, we have designed, synthesised and tested a new specific SK1 inhibitor with a low toxicity profile. Methods: Field template molecular modelling was used for compound design. Lead compounds were tested in cell and mouse cancer models. Results: Field template analysis of three known SK1 inhibitors, SKI-178, 12aa and SK1-I, was performed and compound screening identified six potential new SK1 inhibitors. SK1 activity assays in both cell-free and in vitro settings showed that two compounds were effective SK1 inhibitors. Compound SK-F has potently decreased cancer cell viability in vitro and sensitised mouse breast tumours to docetaxel (DTX) in vivo, without significant whole-body toxicity. Conclusion: Through field template screening, we have identified a new SK1 inhibitor, SK-F, which demonstrated antitumour activity in vitro and in vivo without overt toxicity when combined with DTX

    Introduction

    Get PDF
    Why do parent\u2013child argumentative interactions matter? What is the reason for such an interest? This chapter provides the reasons that motivated the study of parent\u2013child argumentation with the aim to understand the function of this type of interactions. Focusing on the activity of family mealtime, in the first part, the chapter draws attention to the distinctive features of parent\u2013child conversations. A second section of the chapter is devoted to discussing whether and, eventually, when children have the competence to construct arguments and engage in argumentative discussions with the aim to convince their parents to change opinion. In the last part of the chapter, research questions and structure of the volume are presented

    Microsatellite Instability in Pediatric High Grade Glioma Is Associated with Genomic Profile and Differential Target Gene Inactivation

    Get PDF
    High grade gliomas (HGG) are one of the leading causes of cancer-related deaths in children, and there is increasing evidence that pediatric HGG may harbor distinct molecular characteristics compared to adult tumors. We have sought to clarify the role of microsatellite instability (MSI) in pediatric versus adult HGG. MSI status was determined in 144 patients (71 pediatric and 73 adults) using a well established panel of five quasimonomorphic mononucleotide repeat markers. Expression of MLH1, MSH2, MSH6 and PMS2 was determined by immunohistochemistry, MLH1 was assessed for mutations by direct sequencing and promoter methylation using MS-PCR. DNA copy number profiles were derived using array CGH, and mutations in eighteen MSI target genes studied by multiplex PCR and genotyping. MSI was found in 14/71 (19.7%) pediatric cases, significantly more than observed in adults (5/73, 6.8%; p = 0.02, Chi-square test). MLH1 expression was downregulated in 10/13 cases, however no mutations or promoter methylation were found. MSH6 was absent in one pediatric MSI-High tumor, consistent with an inherited mismatch repair deficiency associated with germline MSH6 mutation. MSI was classed as Type A, and associated with a remarkably stable genomic profile. Of the eighteen classic MSI target genes, we identified mutations only in MSH6 and DNAPKcs and described a polymorphism in MRE11 without apparent functional consequences in DNA double strand break detection and repair. This study thus provides evidence for a potential novel molecular pathway in a proportion of gliomas associated with the presence of MSI

    In silico Experimentation of Glioma Microenvironment Development and Anti-tumor Therapy

    Get PDF
    Tumor cells do not develop in isolation, but co-evolve with stromal cells and tumor-associated immune cells in a tumor microenvironment mediated by an array of soluble factors, forming a complex intercellular signaling network. Herein, we report an unbiased, generic model to integrate prior biochemical data and the constructed brain tumor microenvironment in silico as characterized by an intercellular signaling network comprising 5 types of cells, 15 cytokines, and 69 signaling pathways. The results show that glioma develops through three distinct phases: pre-tumor, rapid expansion, and saturation. We designed a microglia depletion therapy and observed significant benefit for virtual patients treated at the early stages but strikingly no therapeutic efficacy at all when therapy was given at a slightly later stage. Cytokine combination therapy exhibits more focused and enhanced therapeutic response even when microglia depletion therapy already fails. It was further revealed that the optimal combination depends on the molecular profile of individual patients, suggesting the need for patient stratification and personalized treatment. These results, obtained solely by observing the in silico dynamics of the glioma microenvironment with no fitting to experimental/clinical data, reflect many characteristics of human glioma development and imply new venues for treating tumors via selective targeting of microenvironmental components

    Recapitulation of tumor heterogeneity and molecular signatures in a 3D brain cancer model with decreased sensitivity to histone deacetylase inhibition

    Get PDF
    INTRODUCTION Physiologically relevant pre-clinical ex vivo models recapitulating CNS tumor micro-environmental complexity will aid development of biologically-targeted agents. We present comprehensive characterization of tumor aggregates generated using the 3D Rotary Cell Culture System (RCCS). METHODS CNS cancer cell lines were grown in conventional 2D cultures and the RCCS and comparison with a cohort of 53 pediatric high grade gliomas conducted by genome wide gene expression and microRNA arrays, coupled with immunohistochemistry, ex vivo magnetic resonance spectroscopy and drug sensitivity evaluation using the histone deacetylase inhibitor, Vorinostat. RESULTS Macroscopic RCCS aggregates recapitulated the heterogeneous morphology of brain tumors with a distinct proliferating rim, necrotic core and oxygen tension gradient. Gene expression and microRNA analyses revealed significant differences with 3D expression intermediate to 2D cultures and primary brain tumors. Metabolic profiling revealed differential profiles, with an increase in tumor specific metabolites in 3D. To evaluate the potential of the RCCS as a drug testing tool, we determined the efficacy of Vorinostat against aggregates of U87 and KNS42 glioblastoma cells. Both lines demonstrated markedly reduced sensitivity when assaying in 3D culture conditions compared to classical 2D drug screen approaches. CONCLUSIONS Our comprehensive characterization demonstrates that 3D RCCS culture of high grade brain tumor cells has profound effects on the genetic, epigenetic and metabolic profiles of cultured cells, with these cells residing as an intermediate phenotype between that of 2D cultures and primary tumors. There is a discrepancy between 2D culture and tumor molecular profiles, and RCCS partially re-capitulates tissue specific features, allowing drug testing in a more relevant ex vivo system
    • …
    corecore