47 research outputs found

    The JCMT BISTRO Survey: Multi-wavelength polarimetry of bright regions in NGC 2071 in the far-infrared/submillimetre range, with POL-2 and HAWC+

    Get PDF
    Polarized dust emission is a key tracer in the study of interstellar medium and of star formation. The observed polarization, however, is a product of magnetic field structure, dust grain properties and grain alignment efficiency, as well as their variations in the line of sight, making it difficult to interpret polarization unambiguously. The comparison of polarimetry at multiple wavelengths is a possible way of mitigating this problem. We use data from HAWC+/SOFIA and from SCUBA-2/POL-2 (from the BISTRO survey) to analyse the NGC 2071 molecular cloud at 154, 214 and 850 Ī¼m. The polarization angle changes significantly with wavelength over part of NGC 2071, suggesting a change in magnetic field morphology on the line of sight as each wavelength best traces different dust populations. Other possible explanations are the existence of more than one polarization mechanism in the cloud or scattering from very large grains. The observed change of polarization fraction with wavelength, and the 214-to-154 Ī¼m polarization ratio in particular, are difficult to reproduce with current dust models under the assumption of uniform alignment efficiency. We also show that the standard procedure of using monochromatic intensity as a proxy for column density may produce spurious results at HAWC+ wavelengths. Using both long-wavelength (POL-2, 850 Ī¼m) and short-wavelength (HAWC+, ā‰²200Ī¼m) polarimetry is key in obtaining these results. This study clearly shows the importance of multi-wavelength polarimetry at submillimeter bands to understand the dust properties of molecular clouds and the relationship between magnetic field and star formation

    The Twisted Magnetic Field of the Protobinary L483

    Get PDF
    We present H-band (1.65 Ī¼m) and SOFIA HAWC+ 154 Ī¼m polarization observations of the low-mass core L483. Our H-band observations reveal a magnetic field that is overwhelmingly in the Eā€“W direction, which is approximately parallel to the bipolar outflow that is observed in scattered IR light and in single-dish 12CO observations. From our 154 Ī¼m data, we infer a āˆ¼45Ā° twist in the magnetic field within the inner 5ā€³ (1000 au) of L483. We compare these new observations with published single-dish 350 Ī¼m polarimetry and find that the 10,000 au scale H-band data match the smaller-scale 350 Ī¼m data, indicating that the collapse of L483 is magnetically regulated on these larger scales. We also present high-resolution 1.3 mm Atacama Large Millimeter/submillimeter Array data of L483 that reveals it is a close binary star with a separation of 34 au. The plane of the binary of L483 is observed to be approximately parallel to the twisted field in the inner 1000 au. Comparing this result to the āˆ¼1000 au protostellar envelope, we find that the envelope is roughly perpendicular to the 1000 au HAWC+ field. Using the data presented, we speculate that L483 initially formed as a wide binary and the companion star migrated to its current position, causing an extreme shift in angular momentum thereby producing the twisted magnetic field morphology observed. More observations are needed to further test this scenario

    The James Clerk Maxwell telescope Legacy Survey of the Gould Belt: a molecular line study of the Ophiuchus molecular cloud

    Get PDF
    CO, 13CO, and C18O J = 3-2 observations are presented of the Ophiuchus molecular cloud. The 13CO and C18O emission is dominated by the Oph A clump, and the Oph B1, B2, C, E, F, and J regions. The optically thin(ner) C18O line is used as a column density tracer, from which the gravitational binding energy is estimated to be 4.5 Ɨ 1039 J (2282 MāŠ™ km2 s-2). The turbulent kinetic energy is 6.3 Ɨ 1038 J (320 MāŠ™ km2 s-2), or seven times less than this, and therefore the Oph cloud as a whole is gravitationally bound. 30 protostars were searched for high-velocity gas, with 8 showing outflows, and 20 more having evidence of high-velocity gas along their lines of sight. The total outflow kinetic energy is 1.3 Ɨ 1038 J (67 MāŠ™ km2 s-2), corresponding to 21 per cent of the cloud's turbulent kinetic energy. Although turbulent injection by outflows is significant, but does not appear to be the dominant source of turbulence in the cloud. 105 dense molecular clumplets were identified, which had radii Ėœ0.01-0.05 pc, virial masses Ėœ0.1-12 MāŠ™, luminosities Ėœ0.001-0.1 K km s-1 pc-2, and excitation temperatures Ėœ10-50 K. These are consistent with the standard Giant Molecular Cloud (GMC) based size-linewidth relationships, showing that the scaling laws extend down to size scales of hundredths of a parsec, and to subsolar-mass condensations. There is however no compelling evidence that the majority of clumplets are undergoing free-fall collapse, nor that they are pressure confined

    The JCMT BISTRO Survey: multiwavelength polarimetry of bright regions in NGC 2071 in the far-infrared/submillimetre range, with POL-2 and HAWC+

    Get PDF
    Polarized dust emission is a key tracer in the study of interstellar medium and of star formation. The observed polarization, however, is a product of magnetic field structure, dust grain properties, and grain alignment efficiency, as well as their variations in the line of sight, making it difficult to interpret polarization unambiguously. The comparison of polarimetry at multiple wavelengths is a possible way of mitigating this problem. We use data from HAWC+ /SOFIA and from SCUBA-2/POL-2 (from the BISTRO survey) to analyse the NGC 2071 molecular cloud at 154, 214, and 850 Ī¼m. The polarization angle changes significantly with wavelength over part of NGC 2071, suggesting a change in magnetic field morphology on the line of sight as each wavelength best traces different dust populations. Other possible explanations are the existence of more than one polarization mechanism in the cloud or scattering from very large grains. The observed change of polarization fraction with wavelength, and the 214-to-154 Ī¼m polarization ratio in particular, are difficult to reproduce with current dust models under the assumption of uniform alignment efficiency. We also show that the standard procedure of using monochromatic intensity as a proxy for column density may produce spurious results at HAWC+wavelengths. Using both long-wavelength (POL-2, 850 Ī¼m) and short-wavelength (HAWC+, ā‰²200Ī¼m) polarimetry is key in obtaining these results. This study clearly shows the importance of multi-wavelength polarimetry at submillimetre bands to understand the dust properties of molecular clouds and the relationship between magnetic field and star formation

    Cross-National Differences in Victimization : Disentangling the Impact of Composition and Context

    Get PDF
    Varying rates of criminal victimization across countries are assumed to be the outcome of countrylevel structural constraints that determine the supply ofmotivated oĀ”enders, as well as the differential composition within countries of suitable targets and capable guardianship. However, previous empirical tests of these ā€˜compositionalā€™ and ā€˜contextualā€™ explanations of cross-national diĀ”erences have been performed upon macro-level crime data due to the unavailability of comparable individual-level data across countries. This limitation has had two important consequences for cross-national crime research. First, micro-/meso-level mechanisms underlying cross-national differences cannot be truly inferred from macro-level data. Secondly, the eĀ”ects of contextual measures (e.g. income inequality) on crime are uncontrolled for compositional heterogeneity. In this paper, these limitations are overcome by analysing individual-level victimization data across 18 countries from the International CrimeVictims Survey. Results from multi-level analyses on theft and violent victimization indicate that the national level of income inequality is positively related to risk, independent of compositional (i.e. micro- and meso-level) diĀ”erences. Furthermore, crossnational variation in victimization rates is not only shaped by diĀ”erences in national context, but also by varying composition. More speciĀ¢cally, countries had higher crime rates the more they consisted of urban residents and regions with lowaverage social cohesion.

    The JCMT BISTRO Survey: The Magnetic Field Strength in the Orion A Filament

    Get PDF
    We determine the magnetic field strength in the OMC 1 region of the Orion A filament via a new implementation of the Chandrasekhar-Fermi method using observations performed as part of the James Clerk Maxwell Telescope (JCMT) B-Fields In Star-Forming Region Observations (BISTRO) survey with the POL-2 instrument. We combine BISTRO data with archival SCUBA-2 and HARP observations to find a plane-of-sky magnetic field strength in OMC 1 of B_pos=6.6Ā±4.7 mG, where Ī“B_pos=4.7 mG represents a predominantly systematic uncertainty. We develop a new method for measuring angular dispersion, analogous to unsharp masking. We find a magnetic energy density of ~1.7Ɨ10^-7 Jm^-3 in OMC 1, comparable both to the gravitational potential energy density of OMC 1 (~10^-7 Jm^-3), and to the energy density in the Orion BN/KL outflow (~10^-7 Jm^-3). We find that neither the AlfvĆ©n velocity in OMC 1 nor the velocity of the super-AlfvĆ©nic outflow ejecta is sufficiently large for the BN/KL outflow to have caused large-scale distortion of the local magnetic field in the ~500-year lifetime of the outflow. Hence, we propose that the hour-glass field morphology in OMC 1 is caused by the distortion of a primordial cylindrically-symmetric magnetic field by the gravitational fragmentation of the filament and/or the gravitational interaction of the BN/KL and S clumps. We find that OMC 1 is currently in or near magnetically-supported equilibrium, and that the current large-scale morphology of the BN/KL outflow is regulated by the geometry of the magnetic field in OMC 1, and not vice versa

    The JCMT BISTRO Survey: Revealing the diverse magnetic field morphologies in Taurus dense cores with sensitive sub-millimeter polarimetry

    Get PDF
    Ā© 2021. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/We have obtained sensitive dust continuum polarization observations at 850 Ī¼\mum in the B213 region of Taurus using POL-2 on SCUBA-2 at the James Clerk Maxwell Telescope (JCMT), as part of the BISTRO (B-fields in STar-forming Region Observations) survey. These observations allow us to probe magnetic field (B-field) at high spatial resolution (āˆ¼\sim2000 au or āˆ¼\sim0.01 pc at 140 pc) in two protostellar cores (K04166 and K04169) and one prestellar core (Miz-8b) that lie within the B213 filament. Using the Davis-Chandrasekhar-Fermi method, we estimate the B-field strengths in K04166, K04169, and Miz-8b to be 38Ā±\pm14 Ī¼\muG, 44Ā±\pm16 Ī¼\muG, and 12Ā±\pm5 Ī¼\muG, respectively. These cores show distinct mean B-field orientations. B-field in K04166 is well ordered and aligned parallel to the orientations of the core minor axis, outflows, core rotation axis, and large-scale uniform B-field, in accordance with magnetically regulated star formation via ambipolar diffusion taking place in K04166. B-field in K04169 is found to be ordered but oriented nearly perpendicular to the core minor axis and large-scale B-field, and not well-correlated with other axes. In contrast, Miz-8b exhibits disordered B-field which show no preferred alignment with the core minor axis or large-scale field. We found that only one core, K04166, retains a memory of the large-scale uniform B-field. The other two cores, K04169 and Miz-8b, are decoupled from the large-scale field. Such a complex B-field configuration could be caused by gas inflow onto the filament, even in the presence of a substantial magnetic flux.Peer reviewe

    A Holistic Perspective on the Dynamics of G035.39-00.33 : The Interplay between Gas and Magnetic Fields

    Get PDF
    Magnetic field plays a crucial role in shaping molecular clouds and regulating star formation, yet the complete information on the magnetic field is not well constrained owing to the limitations in observations. We study the magnetic field in the massive infrared dark cloud G035.39-00.33 from dust continuum polarization observations at 850 mu m with SCUBA-2/POL-2 at JCMT for the first time. The magnetic field tends to be perpendicular to the densest part of the main filament (F-M), whereas it has a less defined relative orientation in the rest of the structure, where it tends to be parallel to some diffuse regions. A mean plane-of-the-sky magnetic field strength of similar to 50 mu G for F-M is obtained using the Davis-Chandrasekhar-Fermi method. Based on (CO)-C-13 (1-0) line observations, we suggest a formation scenario of F-M due to large-scale (similar to 10 pc) cloud-cloud collision. Using additional NH3 line data, we estimate that F-M will be gravitationally unstable if it is only supported by thermal pressure and turbulence. The northern part of F-M, however, can be stabilized by a modest additional support from the local magnetic field. The middle and southern parts of F-M are likely unstable even if the magnetic field support is taken into account. We claim that the clumps in F-M may be supported by turbulence and magnetic fields against gravitational collapse. Finally, we identified for the first time a massive (similar to 200 M-circle dot, collapsing starless clump candidate, "c8," in G035.39-00.33. The magnetic field surrounding "c8" is likely pinched, hinting at an accretion flow along the filament.Peer reviewe

    Magnetic Fields toward Ophiuchus-B Derived from SCUBA-2 Polarization Measurements

    Get PDF
    We present the results of dust emission polarization measurements of Ophiuchus-B (Oph-B) carried out using the Submillimetre Common-User Bolometer Array 2 (SCUBA-2) camera with its associated polarimeter (POL-2) on the James Clerk Maxwell Telescope in Hawaii. This work is part of the B-fields in Star-forming Region Observations survey initiated to understand the role of magnetic fields in star formation for nearby star-forming molecular clouds. We present a first look at the geometry and strength of magnetic fields in Oph-B. The field geometry is traced over ~0.2 pc, with clear detection of both of the sub-clumps of Oph-B. The field pattern appears significantly disordered in sub-clump Oph-B1. The field geometry in Oph-B2 is more ordered, with a tendency to be along the major axis of the clump, parallel to the filamentary structure within which it lies. The degree of polarization decreases systematically toward the dense core material in the two sub-clumps. The field lines in the lower density material along the periphery are smoothly joined to the large-scale magnetic fields probed by NIR polarization observations. We estimated a magnetic field strength of 630 Ā± 410 Ī¼G in the Oph-B2 sub-clump using a Davisā€“Chandrasekharā€“Fermi analysis. With this magnetic field strength, we find a mass-to-flux ratio Ī» = 1.6 Ā± 1.1, which suggests that the Oph-B2 clump is slightly magnetically supercritical
    corecore