8 research outputs found

    Fabrication and in vitro characterisation of bioactive glass composite scaffolds for bone regeneration

    No full text
    Here we fabricate and characterise bioactive composite scaffolds for bone tissue engineering applications. 45S5 Bioglass® (45S5) or strontium-substituted bioactive glass (SrBG) were incorporated into polycaprolactone (PCL) and fabricated into 3D bioactive composite scaffolds utilising additive manufacturing technology. We show that composite scaffolds (PCL/45S5 and PCL/SrBG) can be reproducibly manufactured with a scaffold morphology highly resembling that of PCL scaffolds. Additionally, micro-CT analysis reveals BG particles were homogeneously distributed throughout the scaffolds. Mechanical data suggested that PCL/45S5 and PCL/SrBG composite scaffolds have higher compressive Young’s modulus compared to PCL scaffolds at similar porosity (~75%). After 1 day in accelerated degradation conditions using 5M NaOH, PCL/SrBG, PCL/45S5 and PCL lost 48.6 ±3.8%, 12.1 ±1% and 1.6 ±1% of its original mass, respectively. In vitro studies were conducted using MC3T3 cells under normal and osteogenic conditions. All scaffolds were shown to be non-cytotoxic, and supported cell attachment and proliferation. Our results also indicate that the inclusion of bioactive glass (BG) promotes precipitation of calcium phosphate on the scaffold surfaces which leads to earlier cell differentiation and matrix mineralisation when compared to PCL scaffolds. However, as indicated by ALP activity, no significant difference in osteoblast differentiation was found between PCL/45S5 and PCL/SrBG scaffolds. These results suggest that PCL/45S5 and PCL/SrBG composite scaffold shows potential as a next generation bone scaffold

    Data for accelerated degradation of calcium phosphate surface-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds

    Get PDF
    Polycaprolactone (PCL)-based composite scaffolds containing 50 wt% of 45S5 bioactive glass (45S5) or strontium-substituted bioactive glass (SrBG) particles were fabricated into scaffolds using melt-extrusion based additive manufacturing technique. Additionally, the PCL scaffolds were surface coated with a layer of calcium phosphate (CaP). For a comparison of the scaffold degradation, the scaffolds were then subjected to in vitro accelerated degradation by immersion in 5 M sodium hydroxide (NaOH) solution for up to 7 days. The scaffold׳s morphology was observed by means of SEM imaging and scaffold mass loss was recorded over the experimental period

    A Growth Factor-Free Co-Culture System of Osteoblasts and Peripheral Blood Mononuclear Cells for the Evaluation of the Osteogenesis Potential of Melt-Electrowritten Polycaprolactone Scaffolds

    Get PDF
    Scaffolds made of biodegradable biomaterials are widely used to guide bone regeneration. Commonly, in vitro assessment of scaffolds’ osteogenesis potential has been performed predominantly in monoculture settings. Hence, this study evaluated the potential of an unstimulated, growth factor-free co-culture system comprised of osteoblasts (OB) and peripheral blood mononuclear cells (PBMC) over monoculture of OB as an in vitro platform for screening of bone regeneration potential of scaffolds. Particularly, this study focuses on the osteogenic differentiation and mineralized matrix formation aspects of cells. The study was performed using scaffolds fabricated by means of a melt electrowriting (MEW) technique made of medical-grade polycaprolactone (PCL), with or without a surface coating of calcium phosphate (CaP). Qualitative results, i.e., cell morphology by fluorescence imaging and matrix mineralization by von Kossa staining, indicated the differences in cell behaviours in response to scaffolds’ biomaterial. However, no obvious differences were noted between OB and OB+PBMC groups. Hence, quantitative investigation, i.e., alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) activities, and gene expression were quantitatively evaluated by reverse transcription-polymerase chain reaction (RT-qPCR), were evaluated only of PCL/CaP scaffolds cultured with OB+PBMC, while PCL/CaP scaffolds cultured with OB or PBMC acted as a control. Although this study showed no differences in terms of osteogenic differentiation and ECM mineralization, preliminary qualitative results indicate an obvious difference in the cell/non-mineralized ECM density between scaffolds cultured with OB or OB+PBMC that could be worth further investigation. Collectively, the unstimulated, growth factor-free co-culture (OB+PBMC) system presented in this study could be beneficial for the pre-screening of scaffolds’ in vitro bone regeneration potential prior to validation in vivo

    Polylactides in additive biomanufacturing

    No full text
    New advanced manufacturing technologies under the alias of additive biomanufacturing allow the design and fabrication of a range of products from pre-operative models, cutting guides and medical devices to scaffolds. The process of printing in 3 dimensions of cells, extracellular matrix (ECM) and biomaterials (bioinks, powders, etc.) to generate in vitro and/or in vivo tissue analogue structures has been termed bioprinting. To further advance in additive biomanufacturing, there are many aspects that we can learn from the wider additive manufacturing (AM) industry, which have progressed tremendously since its introduction into the manufacturing sector. First, this review gives an overview of additive manufacturing and both industry and academia efforts in addressing specific challenges in the AM technologies to drive toward AM-enabled industrial revolution. After which, considerations of poly(lactides) as a biomaterial in additive biomanufacturing are discussed. Challenges in wider additive biomanufacturing field are discussed in terms of <i>(a) biomaterials; (b) computer-aided design, engineering and manufacturing; (c) AM and additive biomanufacturing printers hardware; and (d) system integration.</i> Finally, the outlook for additive biomanufacturing was discussed

    In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds

    No full text
    In this study, polycaprolactone (PCL)-based composite scaffolds containing 50 wt% of 45S5 Bioglass® (45S5) or strontium-substituted bioactive glass (SrBG) particles were fabricated into scaffolds using an additive manufacturing technique for bone tissue engineering purposes. The PCL scaffolds were surface coated with calcium phosphate (CaP) to enable further comparison of the osteoinductive potential of different scaffolds: PCL (control), PCL/CaP-coated, PCL/50-45S5 and PCL/50-SrBG scaffolds. The PCL/50-45S5 and PCL/50-SrBG composite scaffolds were reproducibly manufactured with a morphology highly resembling that of PCL only scaffolds. However, 50 wt% loading of the bioactive glass (BG) particles into the PCL bulk decreased the scaffold’s compressive Young’s modulus. Coating of PCL scaffolds with CaP had a negligible effect on the scaffold’s porosity and compressive Young’s modulus. When immersed in culture media, BG dissolution ions (Si and Sr) were detected for up to 10 weeks in the immersion media and surface precipitates were formed on both PCL/50-45S5 and PCL/50-SrBG scaffolds’ surfaces, indicating good in vitro bioactivity. In vitro cell studies were conducted using sheep bone marrow stromal cells (BMSCs) under non-osteogenic or osteogenic conditioned media, and under static or dynamic culture environments. All scaffolds were able to support cell adhesion, growth and proliferation. However, when cultured in non-osteogenic media, only PCL/CaP, PCL/50-45S5 and PCL/50-SrBG scaffolds showed an up-regulation of osteogenic gene expression. Additionally, under a dynamic culture environment, the rate of cell growth, proliferation and osteoblast-related gene expression was enhanced across all scaffold groups. Subsequently, PCL/CaP, PCL/50-45S5 and PCL/50-SrBG scaffolds, with or without seeded cells, were implanted subcutaneously into nude rats for the evaluation of osteoinductivity potential. After 8 and 16 weeks, host tissue infiltrated well into the scaffolds, but no mature bone formation was observed in any scaffolds groups

    Polylactides in additive biomanufacturing

    No full text
    corecore