359 research outputs found

    Allo-HSCT in transplant-naive patients with Hodgkin lymphoma: a single-arm, multicenter study

    Get PDF
    We evaluated the role of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in transplant-naΓ―ve patients with relapsed/refractory Hodgkin lymphoma (HL) who failed to attain metabolic complete response (mCR) to 1 to 2 lines of salvage chemotherapyThose with residual but nonprogressive disease assessed by positron emission tomography/computed tomography scanning were eligible. An additional 1 to 2 cycles of salvage therapy were permissible in those with progressive disease or when required to bridge to allo-HSCT, with additional imaging at baseline before transplantation. Conditioning consisted of carmustine, etoposide, cytarabine, melphalan, and alemtuzumab. Donor lymphocyte infusions (DLI) were administered for mixed chimerism or residual or relapsed disease. Eleven patients had sibling donors, 13 had HLA-matched unrelated donors, and 7 had HLA-mismatched unrelated donors. There were no graft failures, and no episodes of grade 4 acute graft-versus-host disease (GVHD); only 19.4% of patients had grade 2 to 3 GVHD, and 22.2% had extensive chronic GVHD. The non-relapse mortality rate was 16.1% (95% confidence interval [CI], 7.1%-34.5%). Relapse incidence was 18.7% (95% CI, 8.2%-39.2%). The study met its primary objective, with a 3-year progression-free survival of 67.7% (95% CI, 48.4%-81.2%). Survival outcomes were equivalent in those with residual metabolically active disease immediately before transplantation (n = 24 [70.8%; 95% CI, 17.2%-83.7%]). Two of the 5 patients who relapsed received DLI and remained in mCR at latest follow-up, with a 3-year overall survival of 80.7% (95% CI, 61.9%-90.8%). We demonstrate encouraging results that establish a potential role for allo-HSCT in selected high-risk patients with HL. This trial was registered at www.clinicaltrials.gov as #NCT00908180

    Selective scattering between Floquet-Bloch and Volkov states in a topological insulator

    Get PDF
    The coherent optical manipulation of solids is emerging as a promising way to engineer novel quantum states of matter. The strong time periodic potential of intense laser light can be used to generate hybrid photon-electron states. Interaction of light with Bloch states leads to Floquet-Bloch states which are essential in realizing new photo-induced quantum phases. Similarly, dressing of free electron states near the surface of a solid generates Volkov states which are used to study non-linear optics in atoms and semiconductors. The interaction of these two dynamic states with each other remains an open experimental problem. Here we use Time and Angle Resolved Photoemission Spectroscopy (Tr-ARPES) to selectively study the transition between these two states on the surface of the topological insulator Bi2Se3. We find that the coupling between the two strongly depends on the electron momentum, providing a route to enhance or inhibit it. Moreover, by controlling the light polarization we can negate Volkov states in order to generate pure Floquet-Bloch states. This work establishes a systematic path for the coherent manipulation of solids via light-matter interaction.Comment: 21 pages, 6 figures, final version to appear in Nature Physic

    Bowel associated dermatosis – arthritis syndrome: a case report

    Get PDF
    We report a rare case of Bowel Associated Dermatosis – Arthritis Syndrome in a young patient with complex Crohn's disease who presented with fever, arthritis, rash and worsening of diarrhea with abdominal pain, who promptly responded to a short course of steroids

    Neurotrophin gene augmentation by electrotransfer to improve cochlear implant hearing outcomes

    Get PDF
    This Review outlines the development of DNA-based therapeutics for treatment of hearing loss, and in particular, considers the potential to utilize the properties of recombinant neurotrophins to improve cochlear auditory (spiral ganglion) neuron survival and repair. This potential to reduce spiral ganglion neuron death and indeed re-grow the auditory nerve fibres has been the subject of considerable pre-clinical evaluation over decades with the view of improving the neural interface with cochlear implants. This provides the context for discussion about the development of a novel means of using cochlear implant electrode arrays for gene electrotransfer. Mesenchymal cells which line the cochlear perilymphatic compartment can be selectively transfected with (naked) plasmid DNA using array - based gene electrotransfer, termed β€˜close-field electroporation’. This technology is able to drive expression of brain derived neurotrophic factor (BDNF) in the deafened guinea pig model, causing re-growth of the spiral ganglion peripheral neurites towards the mesenchymla cells, and hence into close proximity with cochlear implant electrodes within scala tympani. This was associated with functional enhancement of the cochlear implant neural interface (lower neural recruitment thresholds and expanded dynamic range, measured using electrically - evoked auditory brainstem responses). The basis for the efficiency of close-field electroporation arises from the compression of the electric field in proximity to the ganged cochlear implant electrodes. The regions close to the array with highest field strength corresponded closely to the distribution of bioreporter cells (adherent human embryonic kidney (HEK293)) expressing green fluorescent reporter protein (GFP) following gene electrotransfer. The optimization of the gene electrotransfer parameters using this cell-based model correlated closely with in vitro and in vivo cochlear gene delivery outcomes. The migration of the cochlear implant electrode array-based gene electrotransfer platform towards a clinical trial for neurotrophin-based enhancement of cochlear implants is supported by availability of a novel regulatory compliant mini-plasmid DNA backbone (pFAR4; plasmid Free of Antibiotic Resistance v.4) which could be used to package a β€˜humanized’ neurotrophin expression cassette. A reporter cassette packaged into pFAR4 produced prominent GFP expression in the guinea pig basal turn perilymphatic scalae. More broadly, close-field gene electrotransfer may lend itself to a spectrum of potential DNA therapeutics applications benefitting from titratable, localised, delivery of naked DNA, for gene augmentation, targeted gene regulation, or gene substitution strategies

    Surface radio-mineralisation mediates chelate-free radiolabelling of iron oxide nanoparticles

    Get PDF
    We introduce the concept of surface radio-mineralisation (SRM) to describe the chelate-free radiolabelling of iron-oxide and ferrite nanoparticles. We demonstrate the effectiveness of SRM with both 111In and 89Zr for bare, polymer-matrix multicore, and surface-functionalised magnetite/maghemite nanoparticles; and for bare Y3Fe5O12 nanoparticles. By analogy with geological mineralisation (the hydrothermal deposition of metals as minerals in ore bodies or lodes) we demonstrate that the heat-induced and aqueous SRM process deposits radiometal-oxides onto the nanoparticle or core surfaces, passing through the matrix or coating if present, without changing the size, structure, or magnetic properties of the nanoparticle or core. We show in a mouse model followed over 7 days that the SRM is sufficient to allow quantitative, non-invasive, prolonged, whole-body localisation of injected nanoparticles with nuclear imaging

    Search for CP violation in D+→ϕπ+ and D+sβ†’K0SΟ€+ decays

    Get PDF
    A search for CP violation in D + β†’ ϕπ + decays is performed using data collected in 2011 by the LHCb experiment corresponding to an integrated luminosity of 1.0 fbβˆ’1 at a centre of mass energy of 7 TeV. The CP -violating asymmetry is measured to be (βˆ’0.04 Β± 0.14 Β± 0.14)% for candidates with K βˆ’ K + mass within 20 MeV/c 2 of the Ο• meson mass. A search for a CP -violating asymmetry that varies across the Ο• mass region of the D + β†’ K βˆ’ K + Ο€ + Dalitz plot is also performed, and no evidence for CP violation is found. In addition, the CP asymmetry in the D+sβ†’K0SΟ€+ decay is measured to be (0.61 Β± 0.83 Β± 0.14)%

    The Batten Disease Palmitoyl Protein Thioesterase 1 Gene Regulates Neural Specification and Axon Connectivity during Drosophila Embryonic Development

    Get PDF
    Palmitoyl Protein Thioesterase 1 (PPT1) is an essential lysosomal protein in the mammalian nervous system whereby defects result in a fatal pediatric disease called Infantile Neuronal Ceroids Lipofuscinosis (INCL). Flies bearing mutations in the Drosophila ortholog Ppt1 exhibit phenotypes similar to the human disease: accumulation of autofluorescence deposits and shortened adult lifespan. Since INCL patients die as young children, early developmental neural defects due to the loss of PPT1 are postulated but have yet to be elucidated. Here we show that Drosophila Ppt1 is required during embryonic neural development. Ppt1 embryos display numerous neural defects ranging from abnormal cell fate specification in a number of identified precursor lineages in the CNS, missing and disorganized neurons, faulty motoneuronal axon trajectory, and discontinuous, misaligned, and incorrect midline crossings of the longitudinal axon bundles of the ventral nerve cord. Defects in the PNS include a decreased number of sensory neurons, disorganized chordotonal neural clusters, and abnormally shaped neurons with aberrant dendritic projections. These results indicate that Ppt1 is essential for proper neuronal cell fates and organization; and to establish the local environment for proper axon guidance and fasciculation. Ppt1 function is well conserved from humans to flies; thus the INCL pathologies may be due, in part, to the accumulation of various embryonic neural defects similar to that of Drosophila. These findings may be relevant for understanding the developmental origin of neural deficiencies in INCL

    Identification and In Vivo Characterization of NvFP-7R, a Developmentally Regulated Red Fluorescent Protein of Nematostella vectensis

    Get PDF
    In recent years, the sea anemone Nematostella vectensis has emerged as a critical model organism for comparative genomics and developmental biology. Although Nematostella is a member of the anthozoan cnidarians (known for producing an abundance of diverse fluorescent proteins (FPs)), endogenous patterns of Nematostella fluorescence have not been described and putative FPs encoded by the genome have not been characterized.We described the spatiotemporal expression of endogenous red fluorescence during Nematostella development. Spatially, there are two patterns of red fluorescence, both restricted to the oral endoderm in developing polyps. One pattern is found in long fluorescent domains associated with the eight mesenteries and the other is found in short fluorescent domains situated between tentacles. Temporally, the long domains appear simultaneously at the 12-tentacle stage. In contrast, the short domains arise progressively between the 12- and 16-tentacle stage. To determine the source of the red fluorescence, we used bioinformatic approaches to identify all possible putative Nematostella FPs and a Drosophila S2 cell culture assay to validate NvFP-7R, a novel red fluorescent protein. We report that both the mRNA expression pattern and spectral signature of purified NvFP-7R closely match that of the endogenous red fluorescence. Strikingly, the red fluorescent pattern of NvFP-7R exhibits asymmetric expression along the directive axis, indicating that the nvfp-7r locus senses the positional information of the body plan. At the tissue level, NvFP-7R exhibits an unexpected subcellular localization and a complex complementary expression pattern in apposed epithelia sheets comprising each endodermal mesentery.These experiments not only identify NvFP-7R as a novel red fluorescent protein that could be employed as a research tool; they also uncover an unexpected spatio-temporal complexity of gene expression in an adult cnidarian. Perhaps most importantly, our results define Nematostella as a new model organism for understanding the biological function of fluorescent proteins in vivo
    • …
    corecore