217 research outputs found
Simian immunodeficiency virus (SIV) envelope quasispecies transmission and evolution in infant rhesus macaques after oral challenge with uncloned SIVmac251: increased diversity is associated with neutralizing antibodies and improved survival in previously immunized animals
BACKGROUND: Oral infection of infant macaques with simian immunodeficiency virus (SIV) is a useful animal model to test interventions to reduce postnatal HIV transmission via breast-feeding. We previously demonstrated that immunization of infant rhesus macaques with either modified vaccinia virus Ankara (MVA) expressing SIV Gag, Pol and Env, or live-attenuated SIVmac1A11 resulted in lower viremia and longer survival compared to unimmunized controls after oral challenge with virulent SIVmac251 (Van Rompay et al., J. Virology 77:179–190, 2003). Here we evaluate the impact of these vaccines on oral transmission and evolution of SIV envelope variants. RESULTS: Limiting dilution analysis of SIV RNA followed by heteroduplex mobility assays of the V1–V2 envelope (env) region revealed two major env variants in the uncloned SIVmac251 inoculum. Plasma sampled from all infants 1 week after challenge contained heterogeneous SIV env populations including one or both of the most common env variants in the virus inoculum; no consistent differences in patterns of env variants were found between vaccinated and unvaccinated infants. However, SIV env variant populations diverged in most vaccinated monkeys 3 to 5 months after challenge, in association with the development of neutralizing antibodies. CONCLUSIONS: These patterns of viral envelope diversity, immune responses and disease course in SIV-infected infant macaques are similar to observations in HIV-infected children, and underscore the relevance of this pediatric animal model. The results also support the concept that neonatal immunization with HIV vaccines might modulate disease progression in infants infected with HIV by breast-feeding
Phase I Safety and Immunogenicity Evaluation of MVA-CMDR, a Multigenic, Recombinant Modified Vaccinia Ankara-HIV-1 Vaccine Candidate
We conducted a Phase I randomized, dose-escalation, route-comparison trial of MVA-CMDR, a candidate HIV-1 vaccine based on a recombinant modified vaccinia Ankara viral vector expressing HIV-1 genes env/gag/pol. The HIV sequences were derived from circulating recombinant form CRF01_AE, which predominates in Thailand. The objective was to evaluate safety and immunogenicity of MVA-CMDR in human volunteers in the US and Thailand.MVA-CMDR or placebo was administered intra-muscularly (IM; 10(7) or 10(8) pfu) or intradermally (ID; 10(6) or 10(7) pfu) at months 0, 1 and 3, to 48 healthy volunteers at low risk for HIV-1 infection. Twelve volunteers in each dosage group were randomized to receive MVA-CMDR or placebo (10∶2). Volunteers were actively monitored for local and systemic reactogenicity and adverse events post vaccination. Cellular immunogenicity was assessed by a validated IFNγ Elispot assay, an intracellular cytokine staining assay, lymphocyte proliferation and a (51)Cr-release assay. Humoral immunogenicity was assessed by ADCC for gp120 and binding antibody ELISAs for gp120 and p24. MVA-CMDR was safe and well tolerated with no vaccine related serious adverse events. Cell-mediated immune responses were: (i) moderate in magnitude (median IFNγ Elispot of 78 SFC/10(6) PBMC at 10(8) pfu IM), but high in response rate (70% (51)Cr-release positive; 90% Elispot positive; 100% ICS positive, at 10(8) pfu IM); (ii) predominantly HIV Env-specific CD4(+) T cells, with a high proliferative capacity and durable for at least 6 months (100% LPA response rate by the IM route); (iv) dose- and route-dependent with 10(8) pfu IM being the most immunogenic treatment. Binding antibodies against gp120 and p24 were detectable in all vaccination groups with ADCC capacity detectable at the highest dose (40% positive at 10(8) pfu IM).MVA-CMDR delivered both intramuscularly and intradermally was safe, well-tolerated and elicited durable cell-mediated and humoral immune responses.ClinicalTrials.gov NCT00376090
Partial efficacy of a VSV-SIV/MVA-SIV vaccine regimen against oral SIV challenge in infant macaques
Despite antiretroviral medications, the rate of pediatric HIV-1 infections through breast-milk transmission has been staggering in developing countries. Therefore, the development of a vaccine to protect vulnerable infant populations should be actively pursued. We previously demonstrated that oral immunization of newborn macaques with vesicular stomatitis virus expressing simian immunodeficiency virus genes (VSV-SIV) followed 2 weeks later by an intramuscular boost with modified vaccinia ankara virus expressing SIV (MVA-SIV) successfully induced SIV-specific T and B cell responses in multiple lymphoid tissues, including the tonsil and intestine [13]. In the current study, we tested the oral VSV-SIV prime/systemic MVA-SIV boost vaccine for efficacy against multiple oral SIVmac251 challenges starting two weeks after the booster vaccination. The vaccine did not prevent SIV infection. However, in vaccinated infants, the level of SIV-specific plasma IgA (but not IgG) at the time of challenge was inversely correlated with peak viremia. In addition, the levels of SIV-specific IgA in saliva and plasma were inversely correlated with viral load at euthanasia. Animals with tonsils that contained higher frequencies of SIV-specific TNF-α- or IFN-γ-producing CD8+ T cells and central memory T cells at euthanasia also had lower viremia. Interestingly, a marked depletion of CD25+ FoxP3+ CD4+ T cells was observed in the tonsils as well as the intestine of these animals, implying that T regulatory cells may be a major target of SIV infection in infant macaques. Overall, the data suggest that, in infant macaques orally infected with SIV, the co-induction of local antiviral cytotoxic T cells and T regulatory cells that promote the development of IgA responses may result in better control of viral replication. Thus, future vaccination efforts should be directed towards induction of IgA and mucosal T cell responses to prevent or reduce virus replication in infants
Recommended from our members
A network analysis to identify mediators of germline-driven differences in breast cancer prognosis.
Identifying the underlying genetic drivers of the heritability of breast cancer prognosis remains elusive. We adapt a network-based approach to handle underpowered complex datasets to provide new insights into the potential function of germline variants in breast cancer prognosis. This network-based analysis studies ~7.3 million variants in 84,457 breast cancer patients in relation to breast cancer survival and confirms the results on 12,381 independent patients. Aggregating the prognostic effects of genetic variants across multiple genes, we identify four gene modules associated with survival in estrogen receptor (ER)-negative and one in ER-positive disease. The modules show biological enrichment for cancer-related processes such as G-alpha signaling, circadian clock, angiogenesis, and Rho-GTPases in apoptosis
Experimental Infection of Cynomolgus Macaques (Macaca fascicularis) with Aerosolized Monkeypox Virus
Monkeypox virus (MPXV) infection in humans results in clinical symptoms very similar to ordinary smallpox. Aerosol is a route of secondary transmission for monkeypox, and a primary route of smallpox transmission in humans. Therefore, an animal model for aerosol exposure to MPXV is needed to test medical countermeasures. To characterize the pathogenesis in cynomolgus macaques (Macaca fascicularis), groups of macaques were exposed to four different doses of aerosolized MPXV. Blood was collected the day before, and every other day after exposure and assessed for complete blood count (CBC), clinical chemistry analysis, and quantitative PCR. Macaques showed mild anorexia, depression, and fever on day 6 post-exposure. Lymphadenopathy, which differentiates monkeypox from smallpox, was observed in exposed macaques around day 6 post-exposure. CBC and clinical chemistries showed abnormalities similar to human monkeypox cases. Whole blood and throat swab viral loads peaked around day 10, and in survivors, gradually decreased until day 28 post-exposure. Survival was not dose dependent. As such, doses of 4×104 PFU, 1×105 PFU, or 1×106 PFU resulted in lethality for 70% of the animals, whereas a dose of 4×105 PFU resulted in 85% lethality. Overall, cynomolgus macaques exposed to aerosolized MPXV develop a clinical disease that resembles that of human monkeypox. These findings provide a strong foundation for the use of aerosolized MPXV exposure of cynomolgus macaques as an animal model to test medical countermeasures against orthopoxviruses
Heterologous Prime-Boost HIV-1 Vaccination Regimens in Pre-Clinical and Clinical Trials
Currently, there are more than 30 million people infected with HIV-1 and thousands more are infected each day. Vaccination is the single most effective mechanism for prevention of viral disease, and after more than 25 years of research, one vaccine has shown somewhat encouraging results in an advanced clinical efficacy trial. A modified intent-to-treat analysis of trial results showed that infection was approximately 30% lower in the vaccine group compared to the placebo group. The vaccine was administered using a heterologous prime-boost regimen in which both target antigens and delivery vehicles were changed during the course of inoculations. Here we examine the complexity of heterologous prime-boost immunizations. We show that the use of different delivery vehicles in prime and boost inoculations can help to avert the inhibitory effects caused by vector-specific immune responses. We also show that the introduction of new antigens into boost inoculations can be advantageous, demonstrating that the effect of ‘original antigenic sin’ is not absolute. Pre-clinical and clinical studies are reviewed, including our own work with a three-vector vaccination regimen using recombinant DNA, virus (Sendai virus or vaccinia virus) and protein. Promising preliminary results suggest that the heterologous prime-boost strategy may possibly provide a foundation for the future prevention of HIV-1 infections in humans
SIVmac239 MVA vaccine with and without a DNA prime, similar prevention of infection by a repeated dose SIVsmE660 challenge despite different immune responses
Vaccine regimens using different agents for priming and boosting have become popular for enhancing T cell and Ab responses elicited by candidate HIV/AIDS vaccines. Here we use a simian model to evaluate immunogenicity and protective efficacy of a recombinant modified vaccinia Ankara (MVA) vaccine in the presence and absence of a recombinant DNA prime. The simian vaccines and regimens represent prototypes for candidate HIV vaccines currently undergoing clinical testing
The past, present, and future of the brain imaging data structure (BIDS)
The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS
SpadaHC: a database to improve the classification of variants in hereditary cancer genes in the Spanish population
Accurate classification of genetic variants is crucial for clinical decision-making in hereditary cancer. In Spain, genetic diagnostic laboratories have traditionally approached this task independently due to the lack of a dedicated resource. Here we present SpadaHC, a web-based database for sharing variants in hereditary cancer genes in the Spanish population. SpadaHC is implemented using a three-tier architecture consisting of a relational database, a web tool and a bioinformatics pipeline. Contributing laboratories can share variant classifications and variants from individuals in Variant Calling Format (VCF) format. The platform supports open and restricted access, flexible dataset submissions, automatic pseudo-anonymization, VCF quality control, variant normalization and liftover between genome builds. Users can flexibly explore and search data, receive automatic discrepancy notifications and access SpadaHC population frequencies based on many criteria. In February 2024, SpadaHC included 18 laboratory members, storing 1.17 million variants from 4306 patients and 16 343 laboratory classifications. In the first analysis of the shared data, we identified 84 genetic variants with clinically relevant discrepancies in their classifications and addressed them through a three-phase resolution strategy. This work highlights the importance of data sharing to promote consistency in variant classifications among laboratories, so patients and family members can benefit from more accurate clinical management.Database URL: https://spadahc.ciberisciii.es/ Overview of SpadaHC and its main views. (A) List of existing variants in SpadaHC (in the image, search for the ATM gene). The 'Expert Cl.' column shows the classification made by a group of experts; the 'Lab Cl.' column shows a summary of the classifications made by the laboratories. (B) Allele frequency of a variant in the SpadaHC population according to clinical suspicion and sex. (C) Classifications provided by the laboratories for a variant. (D) List of patients carrying a variant. (E) Histogram showing the coverage and frequency (allele balance) with which the variant was detected in carrier patients. Alt text: SpadaHC overview; laboratories can share datasets of variant classifications (Excel) and variants from individuals (VCFs + Excel). The datasets undergo quality control, bioinformatics pipeline annotation and database integration before being displayed in SpadaHC. The graphical abstract also shows five views of SpadaHC
A network analysis to identify mediators of germline-driven differences in breast cancer prognosis
cited By 0Identifying the underlying genetic drivers of the heritability of breast cancer prognosis remains elusive. We adapt a network-based approach to handle underpowered complex datasets to provide new insights into the potential function of germline variants in breast cancer prognosis. This network-based analysis studies similar to 7.3 million variants in 84,457 breast cancer patients in relation to breast cancer survival and confirms the results on 12,381 independent patients. Aggregating the prognostic effects of genetic variants across multiple genes, we identify four gene modules associated with survival in estrogen receptor (ER)-negative and one in ER-positive disease. The modules show biological enrichment for cancer-related processes such as G-alpha signaling, circadian clock, angiogenesis, and Rho-GTPases in apoptosis.Peer reviewe
- …