19 research outputs found

    Mutations in \u3ci\u3eDMRT3\u3c/i\u3e Affect Locomotion in Horses and Spinal Circuit Function in Mice

    Get PDF
    Locomotion in mammals relies on a central pattern-generating circuitry of spinal interneurons established during development that coordinates limb movement. These networks produce leftā€“right alternation of limbs as well as coordinated activation of flexor and extensor muscles. Here we show that a premature stop codon in the DMRT3 gene has a major effect on the pattern of locomotion in horses. The mutation is permissive for the ability to perform alternate gaits and has a favorable effect on harness racing performance. Examination of wild-type and Dmrt3-null mice demonstrates that Dmrt3 is expressed in the dI6 subdivision of spinal cord neurons, takes part in neuronal specification within this subdivision, and is critical for the normal development of a coordinated locomotor network controlling limb movements. Our discovery positions Dmrt3 in a pivotal role for configuring the spinal circuits controlling stride in vertebrates. The DMRT3 mutation has had a major effect on the diversification of the domestic horse, as the altered gait characteristics of a number of breeds apparently require this mutation

    Molecular interactions between HNF4a, FOXA2 and GABP identified at regulatory DNA elements through ChIP-sequencing

    Get PDF
    Gene expression is regulated by combinations of transcription factors, which can be mapped to regulatory elements on a genome-wide scale using ChIP experiments. In a previous ChIP-chip study of USF1 and USF2 we found evidence also of binding of GABP, FOXA2 and HNF4a within the enriched regions. Here, we have applied ChIP-seq for these transcription factors and identified 3064 peaks of enrichment for GABP, 7266 for FOXA2 and 18783 for HNF4a. Distal elements with USF2 signal was frequently bound also by HNF4a and FOXA2. GABP peaks were found at transcription start sites, whereas 94% of FOXA2 and 90% of HNF4a peaks were located at other positions. We developed a method to accurately define TFBS within peaks, and found the predicted sites to have an elevated conservation level compared to peak centers; however the majority of bindings were not evolutionary conserved. An interaction between HNF4a and GABP was seen at TSS, with one-third of the HNF4a positive promoters being bound also by GABP, and this interaction was verified by co-immunoprecipitations

    SLC10A4-Mediated Modulation of Neuronal Functions

    No full text
    Mental health of a person depends on the correct functioning of the brain. The brain and the spinal cord contain many types of cells, of which one important type are called the neurons. Neurons are special in the way they connect to each other to form large networks.Ā The chemicals called transmitters are packed at the nerve endings into tiny packets called vesicles and when a signal arrives these vesicles fuse immediately to the attached cell surface and release their contents.Ā The role of the synaptic vesicular transporter proteins is to ensure proper packing of transmitter molecules that can be released upon stimulation.Ā Vesicular packing is an important process. The carrier proteins involved in packing work in coordination to determine the amount and type of transmitters to be packed. Missing a carrier protein from the vesicles might lead to improper packing and inaccurate signaliing.Ā These signaling molecules are known for their implications in many psychiatric and neurological disorders like Alzheimerā€™s disease, Parkinsonā€™s disease, Schizophrenia, and attention deficit to name just a few.Ā  How a vesicular transporter can affect the modulatory functions of aminergic neurons is the subject of this thesis. This thesis reports on the effects of the loss of a vesicular orphan transporter. Study I demonstrates the localization of this protein to monoaminergic and cholinergic terminals. It reports the effect of the loss of Slc10A4 on vesicular dopamine uptake, synaptic clearance of dopamine and hypersensitivity of animals to dopamine related psychostimulants. Study I also provides evidence for ATP as a possible ligand for SLC10A4 protein. Study II provides data on the clinical relevance of Slc10A4 in playing a protective role against vulnerability to epilepsy. It reports that loss of Slc10A4 renders the animals hypersensitive to cholinergic drugs. Study III provides a closer look at individual cholinergic synapses at neuromuscular junctions in mice lacking Slc10A4. The structural and electrophysiological properties of the NMJ are found compromised because of the loss of this vesicular protein. Taken together, this thesis presents a SV proteinā€™s perspective of viewing at modulation of synaptic transmission

    SLC10A4-Mediated Modulation of Neuronal Functions

    No full text
    Mental health of a person depends on the correct functioning of the brain. The brain and the spinal cord contain many types of cells, of which one important type are called the neurons. Neurons are special in the way they connect to each other to form large networks.Ā The chemicals called transmitters are packed at the nerve endings into tiny packets called vesicles and when a signal arrives these vesicles fuse immediately to the attached cell surface and release their contents.Ā The role of the synaptic vesicular transporter proteins is to ensure proper packing of transmitter molecules that can be released upon stimulation.Ā Vesicular packing is an important process. The carrier proteins involved in packing work in coordination to determine the amount and type of transmitters to be packed. Missing a carrier protein from the vesicles might lead to improper packing and inaccurate signaliing.Ā These signaling molecules are known for their implications in many psychiatric and neurological disorders like Alzheimerā€™s disease, Parkinsonā€™s disease, Schizophrenia, and attention deficit to name just a few.Ā  How a vesicular transporter can affect the modulatory functions of aminergic neurons is the subject of this thesis. This thesis reports on the effects of the loss of a vesicular orphan transporter. Study I demonstrates the localization of this protein to monoaminergic and cholinergic terminals. It reports the effect of the loss of Slc10A4 on vesicular dopamine uptake, synaptic clearance of dopamine and hypersensitivity of animals to dopamine related psychostimulants. Study I also provides evidence for ATP as a possible ligand for SLC10A4 protein. Study II provides data on the clinical relevance of Slc10A4 in playing a protective role against vulnerability to epilepsy. It reports that loss of Slc10A4 renders the animals hypersensitive to cholinergic drugs. Study III provides a closer look at individual cholinergic synapses at neuromuscular junctions in mice lacking Slc10A4. The structural and electrophysiological properties of the NMJ are found compromised because of the loss of this vesicular protein. Taken together, this thesis presents a SV proteinā€™s perspective of viewing at modulation of synaptic transmission

    24S-Hydroxycholesterol Correlates With Tau and Is Increased in Cerebrospinal Fluid in Parkinson's Disease and Corticobasal Syndrome

    Get PDF
    <p>24S-hydroxycholesterol (24OHC) and Tau are produced in neuronal cells and neurodegeneration leads to increased flux of both of them into cerebrospinal fluid (CSF). In the present study, CSF levels of 24OHC and 27S-hydroxycholesterol (27OHC) along with those of Tau, P-Thr<sup>181</sup>-Tau and AĪ²<sub>42</sub> were measured in patients with early Parkinson's disease (PD), Corticobasal syndrome (CBS), Corticobasal Degeneration (CBD), and controls. Using mouse models with increased or no formation of Tau protein and increased production of 24OHC, we have also tested the hypothesis that there is a direct association between neuronal turnover of 24OHC and Tau. The levels of 24OHC are increased, at a group level, in patients with PD or CBS. We found significant correlations between levels of 24OHC and Tau or P-Thr<sup>181</sup>-Tau in CSF from patients with PD, CBS or CBD. There were no similar correlations between 24OHC and AĪ²<sub>42</sub> in CSF from these patients. The neuronal levels of 24OHC were not altered in Tau knockout or Tau overexpressing mice. Vice versa, Tau species levels were not changed in Cyp46 overexpressing mice with increased neuronal levels of 24OHC. We conclude that the strongly correlative fluxes of 24OHC and Tau from neuronal cells to CSF are likely to be secondary to neurodegeneration and not due to direct interaction between the two factors. We suggest that this high correlation reflects a rapid neurodegeneration of specific neuronal subtypes with simultaneous release of 24OHC and Tau into the CSF.</p

    A role for solute carrier family 10 member 4, or vesicular aminergic-associated transporter, in structural remodelling and transmitter release at the mouse neuromuscular junction

    No full text
    The solute carrier and presynaptic vesicle protein solute carrier family 10 member 4, or vesicular aminergic-associated transporter (VAAT), was recently proven to have a modulatory role in central cholinergic signalling. It is currently unknown whether VAAT also affects peripheral cholinergic synapses. Here we demonstrated a regulatory role for the presynaptic vesicle protein VAAT in neuromuscular junction (NMJ) development and function. NMJs lacking VAAT had fewer branch points, whereas endplates showed an increased number of islands. Whereas the amplitude of spontaneous miniature endplate potentials in VAAT-deficient NMJs was decreased, the amplitude of evoked endplate potentials and the size of the readily releasable pool of vesicles were both increased. Moreover, VAAT-deficient NMJs displayed aberrant short-term synaptic plasticity with enhanced synaptic depression in response to high-frequency stimulation. Finally, the transcript levels of cholinergic receptor subunits in VAAT-deficient muscles were increased, indicating a compensatory postsynaptic sensitization. Our results suggested that VAAT modulates NMJ transmission efficiency and, as such, may represent a novel target for treatment of disorders affecting motor neurons

    Single-cell multimodal analysis in a case with reduced penetrance of Progranulin-Frontotemporal Dementia

    No full text
    We identified an autosomal dominant progranulin mutation carrier without symptoms of dementia in her lifetime (Reduced Penetrance Mutation Carrier, RedPenMC). This resistance to develop expected pathology presents a unique opportunity to interrogate neurodegenerative mechanisms. We performed multimodal single-nuclei analyses of post-mortem frontal cortex from RedPenMC, including transcriptomics and global levels of chromatin marks. RedPenMC had an increased ratio of GRN-expressing microglia, higher levels of activating histone mark H3k4me3 in microglia and lower levels of the repressive chromatin marks H3k9me1 and H3k9me3 in the frontal cortex than her affected mutation carrier son and evidence of higher protein levels of progranulin in both plasma and brain homogenates. Although the study is limited to one case, the results support that restoring brain progranulin levels may be sufficient to escape neurodegeneration and FTD. In addition to previously identified modifier genes, it is possible that epigenetic marks may contribute to the increased progranulin expression in cases of reduced penetrance. These findings may stimulate similar follow-up studies and new therapeutic approaches

    APOE genotype dictates lipidomic signatures in primary human hepatocytes

    No full text
    Apolipoprotein E (APOE) genetic variants are most notably known for their divergent impact on the risk of developing Alzheimerā€™s disease. While APOE genotype has been consistently shown to modulate lipid metabolism in a variety of cellular contexts, the effect of APOE alleles on the lipidome in hepatocytes is unknown. In this study, we investigated the contribution of APOE alleles to lipidomic profiles of donor-derived primary human hepatocytes from 77 subjects. Lipidomic data obtained by liquid chromatography-mass spectrometry were analyzed across Īµ2/Īµ3, Īµ3/Īµ3, and Īµ3/Īµ4 genotypes to reveal how APOE modulates lipid relative levels over age and between groups. Hepatic APOE concentration, measured by ELISA, was assessed for correlation with lipid abundance in subjects grouped as per APOE genotype and sex. APOE genotype-specific differential lipidomic signatures associated with age for multiple lipid classes but did not differ between sexes. Compared to Īµ2/Īµ3, Īµ3/Īµ4 hepatocytes had higher abundance of acylcarnitines (AC) and acylphosphatidylglycerol (AcylPG) as a class, as well as higher medium and long-chain ACs, AcylPG, phosphatidylglycerol (PG), bis(monoacylglycerol)phosphate (BMP), monoacylglycerol (MG) and diacylglycerol (DG) species. The Īµ3/Īµ4 hepatocytes also exhibited a higher abundance of medium and long-chain ACs compared to the Īµ3/Īµ3 hepatocytes. Only in the Īµ3/Īµ4 hepatocytes, APOE concentration was lower and showed a negative correlation with BMP levels, specifically in females. APOE genotype dictates a differential lipidome in primary human hepatocytes. The lipids involved suggest mitochondrial dysfunction with accompanying alterations in neutral lipid storage, reflective of a general disturbance of free fatty acid metabolism in human hepatocytes with the Īµ4 allele
    corecore