10 research outputs found

    Drainage integration and sediment dispersal in active continental rifts:A numerical modelling study of the central Italian Apennines

    Get PDF
    Progressive integration of drainage networks during active crustal extension is observed in continental areas around the globe. This phenomenon is often explained in terms of headward erosion, controlled by the distance to an external base‐level (e.g. the coast). However, conclusive field evidence for the mechanism(s) driving integration is commonly absent as drainage integration events are generally followed by strong erosion. Based on a numerical modelling study of the actively extending central Italian Apennines, we show that overspill mechanisms (basin overfilling and lake overspill) are more likely mechanisms for driving drainage integration in extensional settings and that the balance between sediment supply vs. accommodation creation in fault‐bounded basins is of key importance. In this area drainage integration is evidenced by lake disappearance since the early Pleistocene and the transition from internal (endorheic) to external drainage, i.e. connected to the coast. Using field observations from the central Apennines, we constrain normal faulting and regional surface uplift within the surface process model CASCADE (Braun & Sambridge, 1997, Basin Research, 9, 27) and demonstrate the phenomenon of drainage integration, showing how it leads to the gradual disappearance of lakes and the transition to an interconnected fluvial transport system over time. Our model results show that, in the central Apennines, the relief generated through both regional uplift and fault‐block uplift produces sufficient sediment to fill the extensional basins, enabling overspill and individual basins to eventually become fluvially connected. We discuss field observations that support our findings and throw new light upon previously published interpretations of landscape evolution in this area. We also evaluate the implications of drainage integration for topographic development, regional sediment dispersal and offshore sediment supply. Finally, we discuss the applicability of our results to other continental rifts (including those where regional uplift is absent) and the importance of drainage integration for transient landscape evolution.publishedVersio

    Field calibration of sediment flux dependent river incision

    Get PDF
    Bed erosion and sediment transport are ubiquitous and linked processes in rivers. Erosion can either be modeled as a “detachment limited” function of the shear stress exerted by the flow on the bed, or as a “transport limited” function of the sediment flux capacity of the flow. These two models predict similar channel profiles when erosion rates are constant in space in time, but starkly contrasting behavior in transient settings. Traditionally detachment limited models have been used for bedrock rivers, whereas transport limited models have been used in alluvial settings. In this study we demonstrate that rivers incising into a substrate of loose, but very poorly sorted relict glacial sediment behave in a detachment limited manner. We then develop a methodology by which to both test the appropriate incision model and constrain its form. Specifically we are able to tightly constrain how incision rates vary as a function of the ratio between sediment flux and sediment transport capacity in three rivers responding to deglaciation in the Ladakh Himalaya, northwest India. This represents the first field test of the so-called “tools and cover” effect along individual rivers

    Processes, rates, and time scales of fluvial response in an ancient postglacial landscape of the northwest Indian Himalaya

    No full text
    Both glacial and fluvial processes are key elements in molding landscapes in high mountain environments—glaciers are highly efficient erosional agents and producers of sediment but are restricted spatially, while rivers can transmit such signals through landscapes and flush this sediment out of mountain belts and into sedimentary basins. However, little research has focused on the manner in which these two agents of landscape change interact, especially on longer time scales. We analyze a suite of catchments that drain the previously glaciated Ladakh Batholith in the northwest Indian Himalaya; which preserve the oldest known moraine succession in this mountain chain. We describe and quantify the rates, processes, and time scales of postglacial recovery of the fluvial system across a previously unstudied time interval of 105–106 yr. We demonstrate that glacial modification of the upper reaches of a catchment can have profound first-order influence on the hydraulic scaling of the channel downstream, where increasing degree of glacial modification systematically and nonlinearly elevates the channel concavities of downstream reaches above the expected value range of 0.3–0.6. We also demonstrate that the response time of these systems as they recover must exceed 500 k.y., which is longer than any previously reported estimate for recovery times from glaciations, but is comparable with estimates from many tectonically perturbed landscapes

    THE RATE OF ATTAINMENT OF DIFFUSION EQUILIBRIUM FOR THIOCYANATE BETWEEN PLASMA AND TRANSUDATES FOLLOWING THE INTRAVENOUS INJECTION OF SODIUM THIOCYANATE IN PATIENTS WITH EDEMA

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B. V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 234 (2005): 401-419, doi:10.1016/j.epsl.2005.01.039.We integrate observations of lithospheric extension over a wide range of spatial and temporal scales within the northern North Sea basin and critically review the extent to which existing theories of lithospheric deformation can account for these observations. Data obtained through a prolonged period of hydrocarbon exploration and production has yielded a dense and diverse data set over the entire Viking Graben and its flanking platform areas. These data show how syn-rift accommodation within the basin varied in space and time with sub-kilometer-scale spatial resolution and a temporal resolution of 2–3 Myr. Regional interpretations of 2D seismic reflection, refraction and gravity data for this area have also been published and provide an image of total basin wide stretching for the entire crust. These image data are combined with published strain rate inversion results obtained from tectonic subsidence patterns to constrain the spatio-temporal evolution of strain accumulation throughout the lithosphere during the 40 Myr (170–130 Ma) period of Late Jurassic extension across this basin. For the first 25–30 Myr, strain localisation dominated basin development with strain rates at the eventual rift axis increasing while strain rates over the flanking areas declined. As strain rates across the whole basin were consistently very low (< 3 × 10- 16 s- l), thermally induced strength loss cannot explain this phenomenon. The strain localisation is manifest in the near-surface by a systematic migration of fault activity. The pattern and timing of this migration are inconsistent with flexural bending stresses exerting an underlying control, especially when estimates of flexural rigidity for this area are considered. The best explanation for what is observed in this time period is a coupling between near-surface strain localisation, driven by brittle (or plastic) failure, and the evolving thermal structure of the lithosphere. We demonstrate this process using a continuum mechanics model for normal fault growth that incorporates the strain rate-dependence of frictional strength observed in laboratory studies. During the final 10 Myr of basin formation, strain accumulation was focused within the axis and strain rates declined rapidly. Replacement of weak crust by stronger mantle material plus crustal buoyancy forces can adequately explain this decline.PAC was partially supported by a University Research Fellowship from the Royal Society of London and travel funds from WHOI

    Relationships between fault geometry, slip rate variability and earthquake recurrence in extensional settings

    No full text
    Field observations and modelling indicate that elastic interaction between active faults can lead to variations in earthquake recurrence intervals measured on timescales of 102–104 yr. Fault geometry strongly influences the nature of the interaction between adjacent structures as it controls the spatial redistribution of stress when rupture occurs. In this paper, we use a previously published numerical model for elastic interaction between spontaneously growing faults to investigate the relationships between fault geometry, fault slip rate variations and the statistics of earthquake recurrence. These relationships develop and become systematic as a long-term consequence of stress redistribution in individual rupture events even though on short timescales earthquake activity appears to be stochastic. We characterize fault behaviour using the coefficient of variation (CV) of earthquake recurrence intervals and introduce a new measure, slip-rate variability (SRV) that takes into account the size and time ordering of slip events. CV generally increases when the strain is partitioned on more than one fault but the relationship between long-term fault slip rate (SRmean) and CV is poorly defined. In contrast, SRV increases systematically where faulting is more distributed and SRmean is lower. To first order, SRV is inversely proportional to SRmean. We also extract earthquake recurrence statistics and compare these to previously published probability density functions used in earthquake forecasting. The histograms of earthquake recurrence vary systematically as a function of fault geometry and are best characterized by a Weibull distribution with fitting parameters that vary from site to site along the fault array. We explain these phenomena in terms of a time-varying, geometrical control on stress loading of individual faults arising from the history of elastic interactions and compare our results with published data on SRV and earthquake recurrence along normal faults in New Zealand and in the Italian Apennines. Our results suggest that palaeoseismic data should be collected and analysed with structural geometry in mind and that information on SRV, CV and SRmean should be integrated with data from earthquake catalogues when evaluating seismic hazard

    Modeling the heterogeneous hydraulic properties of faults using constraints from reservoir-induced seismicity

    No full text
    This research uses observations of reservoir-induced seismicity beneath Açu Reservoir, NE Brazil, to investigate the spatial distribution of permeability within the damage zone surrounding faults. The Açu dam is a 34 m high earth-filled dam constructed in 1983 on an area of Precambrian shield. Our previous work has shown that fluctuations in seismic activity are related to varying reservoir level via the diffusion of pore pressure within high-permeability faults embedded in a lower-permeability matrix. High-resolution monitoring of the seismic activity within individual faults, using a network of three-component digital seismographs, has revealed a complex spatial pattern of earthquake clustering and migration that suggests heterogeneous fault zone hydraulic properties are present. We first review the laboratory and field evidence for variations in hydraulic properties associated with (1) structural architecture of faults and (2) confining pressure. We then model flow through a heterogeneous two-dimensional (2-D) fault embedded in, and explicitly coupled to, a 3-D medium and include a power law decay in diffusivity with depth associated with crack closure. Diffusivity of the fault is represented by a spatially correlated random field. We vary both the correlation length and variance of the diffusivity field and calculate the time lag between the maximum reservoir level and the maximum piezometric head in the depth range of observed seismic activity. By assuming that individual earthquake ruptures occur when the local piezometric head is at a maximum, we are able to infer the correlation length and variance that best explain the spatiotemporal pattern of the activity within each seismic cluster. The spatial and temporal evolution of seismicity within clusters is only found to be consistent with a causal mechanism of pore pressure diffusion when significant spatial structure is present in the heterogeneous fault hydraulic properties

    Numerical modelling of pore-pressure diffusion in a reservoir-induced seismicity site in northeast Brazil

    No full text
    A 3-D fluid-flow model is used to investigate pore-pressure diffusion as a mechanism for reservoir-induced seismicity (RIS) at the Açu reservoir in NE Brazil. The Açu dam is a 34-m high earth-filled dam constructed in 1983 on an area of Precambrian shield. Seismic activity in this area has been monitored over a 10-yr period (1987-1997). The frequency of earthquakes clearly varies with seasonal fluctuations of the reservoir level. Information on the hydrological regime of the Açu reservoir (rainfall, vegetation, surface and subsurface storage, etc.) is used to set up a regional groundwater-flow model in order to obtain boundary conditions for a more detailed study of the area of seismic activity. To explain the observed time lag between maximum reservoir level and peak seismic activity we calculate the magnitude and timing of the maximum piezometric head in the depth range of observed seismic activity. By assuming that individual earthquake ruptures occur when the local piezometric head is at a maximum, values of bulk permeability, K, and storativity, S, are derived. If a 3-D homogenous subsurface permeability structure is assumed then the values of K and S obtained are not self-consistent and are physically unrealistic. However, if a high-permeability fault is embedded into, and explicitly coupled with, the surrounding lower-permeability matrix, then our estimates of subsurface hydraulic properties agree well with other field and laboratory measurements. The inclusion of a discrete fault plane in the model is consistent with the results of high-resolution seismic monitoring using a local digital network of stations, which show that the earthquake hypocentres define a set of steeply dipping NE-striking fault planes beneath the reservoir
    corecore