11 research outputs found

    TEX (TEst stand for X-band) at LNF

    Full text link
    TEX facility if commissioned for high power testing to characterize accelerating structures and validate them for the operation on future particle accelerators for medical, industrial and research applications. At this aim, TEX is directly involved in the LNF leading project EuPRAXIA@SPARC_Lab. The brief description of the facility and its status and prospective will be provided.Comment: Talk presented at the International Workshop on Future Linear Colliders (LCWS 2023), 15-19 May 2023. C23-05-15.

    Erratum to: EuPRAXIA Conceptual Design Report – Eur. Phys. J. Special Topics 229, 3675-4284 (2020), https://doi.org/10.1140/epjst/e2020-000127-8

    Get PDF
    International audienceThe online version of the original article can be found at http://https://doi.org/10.1140/epjst/e2020-000127-8</A

    The reactions of phosphodiesters with epoxides : model studies to understanding the interaction of PAH epoxides with nucleic acids

    No full text
    The reaction of polycyclic hydrocarbon epoxides with the phosphate group of DNA has been suggested as potentially important in the cancer process initiated by this class of compounds. Herein the chemical reactions of model phosphates with various classes of epoxides are investigated. With aliphatic and non-bay-region type expoxides the reaction occurred by stereospecific trans addition of phosphate on the epoxide. Various physical-chemical aspects of this reaction are investigated. With K-region type epoxides the same reaction gave exclusively phenols. The biological implications of this result are discussed. Finally, bay-region type oxides, on reaction with phosphate, gave phosphotriesters whose stabilities depend on the phosphodiester nucleophile used and on the presence and arrangement of the diol grouping next to the epoxide

    Erratum to: EuPRAXIA Conceptual Design Report

    No full text
    Figure 20.1 was not correct in the published article. The original article has been corrected. The published apologizes for the inconvenience

    Erratum to: EuPRAXIA Conceptual Design Report

    No full text

    EuPRAXIA Conceptual Design Report

    No full text
    This report presents the conceptual design of a new European research infrastructure EuPRAXIA. The concept has been established over the last four years in a unique collaboration of 41 laboratories within a Horizon 2020 design study funded by the European Union. EuPRAXIA is the first European project that develops a dedicated particle accelerator research infrastructure based on novel plasma acceleration concepts and laser technology. It focuses on the development of electron accelerators and underlying technologies, their user communities, and the exploitation of existing accelerator infrastructures in Europe. EuPRAXIA has involved, amongst others, the international laser community and industry to build links and bridges with accelerator science — through realising synergies, identifying disruptive ideas, innovating, and fostering knowledge exchange. The Eu-PRAXIA project aims at the construction of an innovative electron accelerator using laser- and electron-beam-driven plasma wakefield acceleration that offers a significant reduction in size and possible savings in cost over current state-of-the-art radiofrequency-based accelerators. The foreseen electron energy range of one to five gigaelectronvolts (GeV) and its performance goals will enable versatile applications in various domains, e.g. as a compact free-electron laser (FEL), compact sources for medical imaging and positron generation, table-top test beams for particle detectors, as well as deeply penetrating X-ray and gamma-ray sources for material testing. EuPRAXIA is designed to be the required stepping stone to possible future plasma-based facilities, such as linear colliders at the high-energy physics (HEP) energy frontier. Consistent with a high-confidence approach, the project includes measures to retire risk by establishing scaled technology demonstrators. This report includes preliminary models for project implementation, cost and schedule that would allow operation of the full Eu-PRAXIA facility within 8—10 years

    EuPRAXIA conceptual design report

    Get PDF
    This report presents the conceptual design of a new European research infrastructure EuPRAXIA. The concept has been established over the last four years in a unique collaboration of 41 laboratories within a Horizon 2020 design study funded by the European Union. EuPRAXIA is the first European project that develops a dedicated particle accelerator research infrastructure based on novel plasma acceleration concepts and laser technology. It focuses on the development of electron accelerators and underlying technologies, their user communities, and the exploitation of existing accelerator infrastructures in Europe. EuPRAXIA has involved, amongst others, the international laser community and industry to build links and bridges with accelerator science — through realising synergies, identifying disruptive ideas, innovating, and fostering knowledge exchange. The Eu-PRAXIA project aims at the construction of an innovative electron accelerator using laser- and electron-beam-driven plasma wakefield acceleration that offers a significant reduction in size and possible savings in cost over current state-of-the-art radiofrequency-based accelerators. The foreseen electron energy range of one to five gigaelectronvolts (GeV) and its performance goals will enable versatile applications in various domains, e.g. as a compact free-electron laser (FEL), compact sources for medical imaging and positron generation, table-top test beams for particle detectors, as well as deeply penetrating X-ray and gamma-ray sources for material testing. EuPRAXIA is designed to be the required stepping stone to possible future plasma-based facilities, such as linear colliders at the high-energy physics (HEP) energy frontier. Consistent with a high-confidence approach, the project includes measures to retire risk by establishing scaled technology demonstrators. This report includes preliminary models for project implementation, cost and schedule that would allow operation of the full Eu-PRAXIA facility within 8—10 years
    corecore