8 research outputs found

    Pomološka i senzorna svojstva osam različitih sorata smokve u Hrvatskoj

    Get PDF
    The common fig (Ficus carica L.) is a fruit species traditionally cultivated in coastal Croatia. After some years of being of low commercial value, the interest in fig consumption and cultivation in this region seems to start following the increasing trend. One way of promoting fig consumption is to identify the varietal sensory properties, intending to match the consumer preferences. For this reason, the goal of this study was to evaluate sensory properties and pomological characteristics of fresh fruits of five dark (‘Šaraguja’, ‘Miljska’, ‘Crnica’, ‘Piombinese’, ‘Nero Rosso’) and three light-coloured (‘Petrovača bijela’, ‘Tiger’, ‘San Martino’) skin fig varieties, grown in Croatia. Figs were harvested from 5-years old trees in the fig experimental orchard located in Istria County (Croatia). Significant differences were observed for the properties of appearance, odour, flavour, and taste. Fresh fruits of varieties \u27Šaraguja\u27 and \u27Tiger\u27 reached the highest scores for the intensity of taste, fig odour, and flavour, compared to all the others. The highest values regarding fruit thickness and width were recorded from the variety \u27Petrovača bijela\u27, lenght from the variety \u27Šaraguja\u27, while \u27San Martino\u27 variety had the fruits of biggest weight. The variety \u27Miljska\u27 displayed the lowest values in all the observed pomological parameters. The importance of the pomological description and observation of sensory parameters of fresh figs lies in permitting the producers to decide the potential of each variety based on consumer preferences.Smokva (Ficus carica L.) je voćna vrsta koja se tradicionalno uzgaja u primorskoj Hrvatskoj. Nakon nekoliko godina niske komercijalne vrijednosti ove kulture, čini se da interes za potrošnjom i uzgojem smokava u ovoj regiji počinje rasti. Jedan od načina promicanja konzumacije smokava je prepoznavanje sortnih senzornih svojstava, sa ciljem usklađivanja sklonosti potrošača. Iz tog razloga cilj ovog istraživanja bio je procijeniti senzorna i pomološka svojstva svježih plodova pet crnih (\u27Šaraguja\u27, \u27Miljska\u27, \u27Crnica\u27, \u27Piombinese\u27, \u27Nero Rosso\u27) i tri bijele (\u27Petrovača bijela\u27, \u27Tiger\u27, \u27San Martino\u27) sorte smokve uzgojene u Hrvatskoj. Smokve su ubrane s pet godina starih stabala u pokusnom smokviku u Istarskoj županiji (Hrvatska). Uočene su značajne razlike u svojstvima izgleda, mirisa, arome i okusa. Svježi plodovi smokve sorti ‘Šaraguja’ i ‘Tiger’ postigli su najviše ocjene za intenzitet okusa, mirisa i arome smokve u odnosu na sve ostale sorte. Najviše vrijednosti debljine i širine ploda utvrđene su za sortu \u27Petrovača bijela\u27, širine za sortu \u27Šaraguja\u27, dok je sorta \u27San Martino\u27 imala plodove najveće mase. Sorta \u27Miljska\u27 imala je najmanje vrijednosti za sva istraživana pomološka svojstva. Važnost pomološkog opisa i istraživanja senzornih svojstava svježih smokava leži u omogućavanju proizvođačima da odluče o potencijalu svake sorte na temelju preferencija potrošača

    Physiological and biochemical performance of almond trees under deficit irrigation

    Get PDF
    The almond tree is generally recognized as drought-tolerant, though it depends on water resources to achieve high yields. During the summer months of two consecutive years, several physiological and biochemical parameters were observed, to understand the almond tree’s seasonal sensitivity and behavior under different irrigation strategies based on crop evapotranspiration (ETc): T100 optimal water requirement regime (applying 100% ETc); T70 and T35 sustained deficit irrigation regimes (applying 70% and 35% ETc); T100-35 regulated deficit irrigation regime (reducing the application to 35% ETc during fruit filling stage); and T0 (rainfed). The total leaf chlorophyll and carotenoid reduction in T0 and T35 treatments was significant compared to T100-35. Leaf soluble proteins and total soluble sugar contents were significantly higher in non-irrigated trees compared to other treatments, while the starch content showed the opposite trend. Rainfed trees were under obvious water stress, displaying the lowest values for relative water content (RWC), stomatal conductance (gs), photosynthetic rate (A), and transpiration rate (E), and the highest for intrinsic water use efficiency (A/gs). Plant hormones (ABA and IAA) generally accumulated more in non-irrigated trees. The almond tree has been confirmed as a drought-tolerant species, and when water is scarce, reducing the water application to 35% ETc during fruit filling stage, results in no yield losses, and the plant status remains unstressed. However, to get the maximum crop potential, in years and areas where water is not restricted, full irrigation requirements have been shown to boost almond tree performance.IP acknowledges the financial support provided by the FCTPortuguese Foundation for Science and Technology (SFRH/BD/52539/ 2014), under the Doctoral Programme “Agricultural Production Chains – from fork to farm” (PD/00122/2012). This work was also supported by National Funds by FCT - Portuguese Foundation for Science and Technology, under the project UID/AGR/04033/2019 and by the project PRODER “Estratégias Integradas para o aumento da produtividade da amendoeira em Trás-os-Montes, nº 54611. 2014 a 2018. The authors wish to acknowledge the help and support provided during field and laboratory work by Ana Monteiro, Cristiana Teixeira, Helena Ferreira, Ivo Oliveira, Linton Dinis, Sara Bernardo, Silvia Afonso, and Silvina Morais, and thank João Santos and Chenyao Yang for help with climate data.info:eu-repo/semantics/publishedVersio

    Valorization Challenges to Almond Residues: Phytochemical Composition and Functional Application

    Full text link
    [EN] Almond is characterized by its high nutritional value; although information reported so far mainly concerns edible kernel. Even though the nutritional and commercial relevance of the almond is restricted to almond meat; to date; increasing attention has been paid to other parts of this fruit (skin; shell; and hull); considered by-products that are scarcely characterized and exploited regarding their properties as valuable sources of bioactive compounds (mainly represented by phenolic acids and flavonoids). This lack of proper valorization procedures entails the continuation of the application of traditional procedures to almond residues that nowadays are mainly addressed to livestock feed and energy production. In this sense; data available on the physicochemical and phytochemical composition of almond meat and its related residues suggest promising applications; and allow one to envisage new uses as functional ingredients towards value-added foods and feeds; as well as a source of bioactive phytochemicals to be included in cosmetic formulations. This objective has prompted investigators working in the field to evaluate their functional properties and biological activity. This approach has provided interesting information concerning the capacity of polyphenolic extracts of almond by-products to prevent degenerative diseases linked to oxidative stress and inflammation in human tissues and cells; in the frame of diverse pathophysiological situations. Hence; this review deals with gathering data available in the scientific literature on the phytochemical composition and bioactivity of almond by-products as well as on their bioactivity so as to promote their functional application.This work is supported by European Investment Funds by FEDER/COMPETE/POCI-Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT-Portuguese Foundation for Science and Technology, under the project UID/AGR/04033/2013. The author Iva Prgomet acknowledges the financial support provided by the FCT- Portuguese Foundation for Science and Technology (SFRH/BD/52539/2014), under the Doctoral Programme "Agricultural Production Chains-From Fork to Farm" (PD/00122/2012).Prgomet, I.; Goncalves, B.; Domínguez-Perles, R.; Pascual-Seva, N.; Barros, A. (2017). Valorization Challenges to Almond Residues: Phytochemical Composition and Functional Application. Molecules. 22(10):1-27. https://doi.org/10.3390/molecules22101774S1272210Pirayesh, H., & Khazaeian, A. (2012). Using almond (Prunus amygdalus L.) shell as a bio-waste resource in wood based composite. Composites Part B: Engineering, 43(3), 1475-1479. doi:10.1016/j.compositesb.2011.06.008Takeoka, G., Dao, L., Teranishi, R., Wong, R., Flessa, S., Harden, L., & Edwards, R. (2000). Identification of Three Triterpenoids in Almond Hulls. Journal of Agricultural and Food Chemistry, 48(8), 3437-3439. doi:10.1021/jf9908289Özcan, M. M., Ünver, A., Erkan, E., & Arslan, D. (2011). Characteristics of some almond kernel and oils. Scientia Horticulturae, 127(3), 330-333. doi:10.1016/j.scienta.2010.10.027Wijeratne, S. S. K., Abou-Zaid, M. M., & Shahidi, F. (2006). Antioxidant Polyphenols in Almond and Its Coproducts. Journal of Agricultural and Food Chemistry, 54(2), 312-318. doi:10.1021/jf051692jSfahlan, A. J., Mahmoodzadeh, A., Hasanzadeh, A., Heidari, R., & Jamei, R. (2009). Antioxidants and antiradicals in almond hull and shell (Amygdalus communis L.) as a function of genotype. Food Chemistry, 115(2), 529-533. doi:10.1016/j.foodchem.2008.12.049Yada, S., Lapsley, K., & Huang, G. (2011). A review of composition studies of cultivated almonds: Macronutrients and micronutrients. Journal of Food Composition and Analysis, 24(4-5), 469-480. doi:10.1016/j.jfca.2011.01.007AMAROWICZ, R., TROSZYNSKA, A., & SHAHIDI, F. (2005). ANTIOXIDANT ACTIVITY OF ALMOND SEED EXTRACT AND ITS FRACTIONS. Journal of Food Lipids, 12(4), 344-358. doi:10.1111/j.1745-4522.2005.00029.xSabaté, J. (1999). Nut consumption, vegetarian diets, ischemic heart disease risk, and all-cause mortality: evidence from epidemiologic studies. The American Journal of Clinical Nutrition, 70(3), 500s-503s. doi:10.1093/ajcn/70.3.500sHyson, D. A., Schneeman, B. O., & Davis, P. A. (2002). Almonds and Almond Oil Have Similar Effects on Plasma Lipids and LDL Oxidation in Healthy Men and Women. The Journal of Nutrition, 132(4), 703-707. doi:10.1093/jn/132.4.703Sabaté, J., Haddad, E., Tanzman, J. S., Jambazian, P., & Rajaram, S. (2003). Serum lipid response to the graduated enrichment of a Step I diet with almonds: a randomized feeding trial. The American Journal of Clinical Nutrition, 77(6), 1379-1384. doi:10.1093/ajcn/77.6.1379Berryman, C. E., Preston, A. G., Karmally, W., Deckelbaum, R. J., & Kris-Etherton, P. M. (2011). Effects of almond consumption on the reduction of LDL-cholesterol: a discussion of potential mechanisms and future research directions. Nutrition Reviews, 69(4), 171-185. doi:10.1111/j.1753-4887.2011.00383.xGrassby, T., Mandalari, G., Grundy, M. M.-L., Edwards, C. H., Bisignano, C., Trombetta, D., … Waldron, K. W. (2017). In vitro and in vivo modeling of lipid bioaccessibility and digestion from almond muffins: The importance of the cell-wall barrier mechanism. Journal of Functional Foods, 37, 263-271. doi:10.1016/j.jff.2017.07.046Becker, T. (2000). Consumer perception of fresh meat quality: a framework for analysis. British Food Journal, 102(3), 158-176. doi:10.1108/00070700010371707Abbott, J. A. (1999). Quality measurement of fruits and vegetables. Postharvest Biology and Technology, 15(3), 207-225. doi:10.1016/s0925-5214(98)00086-6Nanos, G. D., Kazantzis, I., Kefalas, P., Petrakis, C., & Stavroulakis, G. G. (2002). Irrigation and harvest time affect almond kernel quality and composition. Scientia Horticulturae, 96(1-4), 249-256. doi:10.1016/s0304-4238(02)00078-xSánchez-Bel, P., Egea, I., Martínez-Madrid, M. C., Flores, B., & Romojaro, F. (2008). Influence of Irrigation and Organic/Inorganic Fertilization on Chemical Quality of Almond (Prunus amygdaluscv. Guara). Journal of Agricultural and Food Chemistry, 56(21), 10056-10062. doi:10.1021/jf8012212Shahidi, F. (2006). Functional Foods: Their Role in Health Promotion and Disease Prevention. Journal of Food Science, 69(5), R146-R149. doi:10.1111/j.1365-2621.2004.tb10727.xBlomhoff, R., Carlsen, M. H., Andersen, L. F., & Jacobs, D. R. (2006). Health benefits of nuts: potential role of antioxidants. British Journal of Nutrition, 96(S2), S52-S60. doi:10.1017/bjn20061864Chen, C.-Y., Lapsley, K., & Blumberg, J. (2006). A nutrition and health perspective on almonds. Journal of the Science of Food and Agriculture, 86(14), 2245-2250. doi:10.1002/jsfa.2659Milbury, P. E., Chen, C.-Y., Dolnikowski, G. G., & Blumberg, J. B. (2006). Determination of Flavonoids and Phenolics and Their Distribution in Almonds. Journal of Agricultural and Food Chemistry, 54(14), 5027-5033. doi:10.1021/jf0603937Wijeratne, S. S. K., Amarowicz, R., & Shahidi, F. (2006). Antioxidant activity of almonds and their by-products in food model systems. Journal of the American Oil Chemists’ Society, 83(3), 223. doi:10.1007/s11746-006-1197-8Toles, C. A., Marshall, W. E., Johns, M. M., Wartelle, L. H., & McAloon, A. (2000). Acid-activated carbons from almond shells: physical, chemical and adsorptive properties and estimated cost of production. Bioresource Technology, 71(1), 87-92. doi:10.1016/s0960-8524(99)00029-2Mandalari, G., Faulks, R. M., Bisignano, C., Waldron, K. W., Narbad, A., & Wickham, M. S. J. (2010). In vitro evaluation of the prebiotic properties of almond skins (Amygdalus communisL.). FEMS Microbiology Letters, 304(2), 116-122. doi:10.1111/j.1574-6968.2010.01898.xChen, C.-Y., Milbury, P. E., Lapsley, K., & Blumberg, J. B. (2005). Flavonoids from Almond Skins Are Bioavailable and Act Synergistically with Vitamins C and E to Enhance Hamster and Human LDL Resistance to Oxidation. The Journal of Nutrition, 135(6), 1366-1373. doi:10.1093/jn/135.6.1366Monagas, M., Garrido, I., Lebrón-Aguilar, R., Bartolome, B., & Gómez-Cordovés, C. (2007). Almond (Prunus dulcis(Mill.) D.A. Webb) Skins as a Potential Source of Bioactive Polyphenols. Journal of Agricultural and Food Chemistry, 55(21), 8498-8507. doi:10.1021/jf071780zMonagas, M., Garrido, I., Lebrón-Aguilar, R., Gómez-Cordovés, M. C., Rybarczyk, A., Amarowicz, R., & Bartolomé, B. (2009). Comparative Flavan-3-ol Profile and Antioxidant Capacity of Roasted Peanut, Hazelnut, and Almond Skins. Journal of Agricultural and Food Chemistry, 57(22), 10590-10599. doi:10.1021/jf901391aMandalari, G., Tomaino, A., Arcoraci, T., Martorana, M., Turco, V. L., Cacciola, F., … Wickham, M. S. J. (2010). Characterization of polyphenols, lipids and dietary fibre from almond skins (Amygdalus communis L.). Journal of Food Composition and Analysis, 23(2), 166-174. doi:10.1016/j.jfca.2009.08.015Ledbetter, C. A. (2008). Shell cracking strength in almond (Prunus dulcis [Mill.] D.A. Webb.) and its implication in uses as a value-added product. Bioresource Technology, 99(13), 5567-5573. doi:10.1016/j.biortech.2007.10.059Homedes, J. M., Roura, E., Keim, N. L., & Brown, D. L. (1993). Almond hulls in swine diet reduce body fat. California Agriculture, 47(3), 27-28. doi:10.3733/ca.v047n03p27Sang, S., Lapsley, K., Rosen, R. T., & Ho, C.-T. (2002). New Prenylated Benzoic Acid and Other Constituents from Almond Hulls (Prunus amygdalusBatsch). Journal of Agricultural and Food Chemistry, 50(3), 607-609. doi:10.1021/jf0110194Pinelo, M., Rubilar, M., Sineiro, J., & Núñez, M. J. (2004). Extraction of antioxidant phenolics from almond hulls ( Prunus amygdalus ) and pine sawdust ( Pinus pinaster ). Food Chemistry, 85(2), 267-273. doi:10.1016/j.foodchem.2003.06.020Amico, V., Barresi, V., Condorelli, D., Spatafora, C., & Tringali, C. (2006). Antiproliferative Terpenoids from Almond Hulls (Prunus dulcis):  Identification and Structure−Activity Relationships. Journal of Agricultural and Food Chemistry, 54(3), 810-814. doi:10.1021/jf052812qRubilar, M., Pinelo, M., Shene, C., Sineiro, J., & Nuñez, M. J. (2007). Separation and HPLC-MS Identification of Phenolic Antioxidants from Agricultural Residues: Almond Hulls and Grape Pomace. Journal of Agricultural and Food Chemistry, 55(25), 10101-10109. doi:10.1021/jf0721996Barreira, J. C. M., Ferreira, I. C. F. R., Oliveira, M. B. P. P., & Pereira, J. A. (2010). Antioxidant Potential of Chestnut (Castanea sativa L.) and Almond (Prunus dulcis L.) By-products. Food Science and Technology International, 16(3), 209-216. doi:10.1177/1082013209353983Moure, A., Pazos, M., Medina, I., Domínguez, H., & Parajó, J. C. (2007). Antioxidant activity of extracts produced by solvent extraction of almond shells acid hydrolysates. Food Chemistry, 101(1), 193-201. doi:10.1016/j.foodchem.2006.01.017Mandalari, G., Arcoraci, T., Martorana, M., Bisignano, C., Rizza, L., Bonina, F., … Tomaino, A. (2013). Antioxidant and Photoprotective Effects of Blanch Water, a Byproduct of the Almond Processing Industry. Molecules, 18(10), 12426-12440. doi:10.3390/molecules181012426Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55(6), 481-504. doi:10.1016/s0031-9422(00)00235-1Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P. E., Tognolini, M., Borges, G., & Crozier, A. (2013). Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antioxidants & Redox Signaling, 18(14), 1818-1892. doi:10.1089/ars.2012.4581Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition, 79(5), 727-747. doi:10.1093/ajcn/79.5.727Falcone Ferreyra, M. L., Rius, S. P., & Casati, P. (2012). Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science, 3. doi:10.3389/fpls.2012.00222Sevenet, T. (1996). Phytochemistry of medicinal plants. Biochimie, 78(4), 291-292. doi:10.1016/0300-9084(96)82199-7Garcia-Salas, P., Morales-Soto, A., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2010). Phenolic-Compound-Extraction Systems for Fruit and Vegetable Samples. Molecules, 15(12), 8813-8826. doi:10.3390/molecules15128813Robbins, R. J. (2003). Phenolic Acids in Foods:  An Overview of Analytical Methodology. Journal of Agricultural and Food Chemistry, 51(10), 2866-2887. doi:10.1021/jf026182tKornsteiner, M., Wagner, K.-H., & Elmadfa, I. (2006). Tocopherols and total phenolics in 10 different nut types. Food Chemistry, 98(2), 381-387. doi:10.1016/j.foodchem.2005.07.033Garrido, I., Monagas, M., Gómez-Cordovés, C., & Bartolomé, B. (2008). Polyphenols and Antioxidant Properties of Almond Skins: Influence of Industrial Processing. Journal of Food Science, 73(2), C106-C115. doi:10.1111/j.1750-3841.2007.00637.xTakeoka, G. R., & Dao, L. T. (2003). Antioxidant Constituents of Almond [Prunus dulcis(Mill.) D.A. Webb] Hulls. Journal of Agricultural and Food Chemistry, 51(2), 496-501. doi:10.1021/jf020660iArráez-Román, D., Fu, S., Sawalha, S. M. S., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2010). HPLC/CE-ESI-TOF-MS methods for the characterization of polyphenols in almond-skin extracts. ELECTROPHORESIS, 31(13), 2289-2296. doi:10.1002/elps.200900679Smeriglio, A., Mandalari, G., Bisignano, C., Filocamo, A., Barreca, D., Bellocco, E., & Trombetta, D. (2016). Polyphenolic content and biological properties of Avola almond (Prunus dulcis Mill. D.A. Webb) skin and its industrial byproducts. Industrial Crops and Products, 83, 283-293. doi:10.1016/j.indcrop.2015.11.089Bolling, B. W., Dolnikowski, G., Blumberg, J. B., & Oliver Chen, C. Y. (2009). Quantification of Almond Skin Polyphenols by Liquid Chromatography-Mass Spectrometry. Journal of Food Science, 74(4), C326-C332. doi:10.1111/j.1750-3841.2009.01133.xFrison-Norrie, S., & Sporns, P. (2002). Identification and Quantification of Flavonol Glycosides in Almond Seedcoats Using MALDI-TOF MS. Journal of Agricultural and Food Chemistry, 50(10), 2782-2787. doi:10.1021/jf0115894Kordali, S., Cakir, A., Mavi, A., Kilic, H., & Yildirim, A. (2005). Screening of Chemical Composition and Antifungal and Antioxidant Activities of the Essential Oils from Three TurkishArtemisiaSpecies. Journal of Agricultural and Food Chemistry, 53(5), 1408-1416. doi:10.1021/jf048429nKedare, S. B., & Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48(4), 412-422. doi:10.1007/s13197-011-0251-1Pisoschi, A. M., & Negulescu, G. P. (2012). Methods for Total Antioxidant Activity Determination: A Review. Biochemistry & Analytical Biochemistry, 01(01). doi:10.4172/2161-1009.1000106Chen, C.-Y. O., & Blumberg, J. B. (2008). In Vitro Activity of Almond Skin Polyphenols for Scavenging Free Radicals and Inducing Quinone Reductase. Journal of Agricultural and Food Chemistry, 56(12), 4427-4434. doi:10.1021/jf800061zBolling, B. W., Blumberg, J. B., & Oliver Chen, C.-Y. (2010). The influence of roasting, pasteurisation, and storage on the polyphenol content and antioxidant capacity of California almond skins. Food Chemistry, 123(4), 1040-1047. doi:10.1016/j.foodchem.2010.05.058Frison, S., & Sporns, P. (2002). Variation in the Flavonol Glycoside Composition of Almond Seedcoats As Determined by MALDI-TOF Mass Spectrometry. Journal of Agricultural and Food Chemistry, 50(23), 6818-6822. doi:10.1021/jf020661aBolling, B. W. (2017). Almond Polyphenols: Methods of Analysis, Contribution to Food Quality, and Health Promotion. Comprehensive Reviews in Food Science and Food Safety, 16(3), 346-368. doi:10.1111/1541-4337.12260Bartolomé, B., Monagas, M., Garrido, I., Gómez-Cordovés, C., Martín-Álvarez, P. J., Lebrón-Aguilar, R., … Andrés-Lacueva, C. (2010). Almond (Prunus dulcis (Mill.) D.A. Webb) polyphenols: From chemical characterization to targeted analysis of phenolic metabolites in humans. Archives of Biochemistry and Biophysics, 501(1), 124-133. doi:10.1016/j.abb.2010.03.020Hughey, C. A., Janusziewicz, R., Minardi, C. S., Phung, J., Huffman, B. A., Reyes, L., … Prakash, A. (2012). Distribution of almond polyphenols in blanch water and skins as a function of blanching time and temperature. Food Chemistry, 131(4), 1165-1173. doi:10.1016/j.foodchem.2011.09.093Fisklements, M., & Barrett, D. M. (2014). Kinetics of almond skin separation as a function of blanching time and temperature. Journal of Food Engineering, 138, 11-16. doi:10.1016/j.jfoodeng.2014.03.012Ingelfinger, F. J. (1973). International Journal of Epidemiology. New England Journal of Medicine, 288(8), 418-418. doi:10.1056/nejm197302222880814González-Castejón, M., & Rodriguez-Casado, A. (2011). Dietary phytochemicals and their potential effects on obesity: A review. Pharmacological Research, 64(5), 438-455. doi:10.1016/j.phrs.2011.07.004Kakkar, S., & Bais, S. (2014). A Review on Protocatechuic Acid and Its Pharmacological Potential. ISRN Pharmacology, 2014, 1-9. doi:10.1155/2014/952943Mandalari, G., Bisignano, C., D’Arrigo, M., Ginestra, G., Arena, A., Tomaino, A., & Wickham, M. S. J. (2010). Antimicrobial potential of polyphenols extracted from almond skins. Letters in Applied Microbiology, no-no. doi:10.1111/j.1472-765x.2010.02862.xMandalari, G., Bisignano, C., Genovese, T., Mazzon, E., Wickham, M. S. J., Paterniti, I., & Cuzzocrea, S. (2011). Natural almond skin reduced oxidative stress and inflammation in an experimental model of inflammatory bowel disease. International Immunopharmacology, 11(8), 915-924. doi:10.1016/j.intimp.2011.02.003Liu, Z., Lin, X., Huang, G., Zhang, W., Rao, P., & Ni, L. (2014). Prebiotic effects of almonds and almond skins on intestinal microbiota in healthy adult humans. Anaerobe, 26, 1-6. doi:10.1016/j.anaerobe.2013.11.007Bisignano, C., Mandalari, G., Smeriglio, A., Trombetta, D., Pizzo, M., Pennisi, R., & Sciortino, M. (2017). Almond Skin Extracts Abrogate HSV-1 Replication by Blocking Virus Binding to the Cell. Viruses, 9(7), 178. doi:10.3390/v9070178Mandalari, G., Tomaino, A., Rich, G. T., Lo Curto, R., Arcoraci, T., Martorana, M., … Wickham, M. S. J. (2010). Polyphenol and nutrient release from skin of almonds during simulated human digestion. Food Chemistry, 122(4), 1083-1088. doi:10.1016/j.foodchem.2010.03.079Mandalari, G., Vardakou, M., Faulks, R., Bisignano, C., Martorana, M., Smeriglio, A., & Trombetta, D. (2016). Food Matrix Effects of Polyphenol Bioaccessibility from Almond Skin during Simulated Human Digestion. Nutrients, 8(9), 568. doi:10.3390/nu8090568Parkar, S. G., Stevenson, D. E., & Skinner, M. A. (2008). The potential influence of fruit polyphenols on colonic microflora and human gut health. International Journal of Food Microbiology, 124(3), 295-298. doi:10.1016/j.ijfoodmicro.2008.03.017Fadel, J. . (1999). Quantitative analyses of selected plant by-product feedstuffs, a global perspective. Animal Feed Science and Technology, 79(4), 255-268. doi:10.1016/s0377-8401(99)00031-0Renewable Energy Production from Almond Wastehttp://www.australianalmonds.com.auChalker-Scott, L. (2007). Impact of Mulches on Landscape Plants and the Environment — A Review. Journal of Environmental Horticulture, 25(4), 239-249. doi:10.24266/0738-2898-25.4.239López, R., Burgos, P., Hermoso, J. M., Hormaza, J. I., & González-Fernández, J. J. (2014). Long term changes in soil properties and enzyme activities after almond shell mulching in avocado organic production. Soil and Tillage Research, 143, 155-163. doi:10.1016/j.still.2014.06.004Urrestarazu, M., Martínez, G. A., & Salas, M. del C. (2005). Almond shell waste: possible local rockwool substitute in soilless crop culture. Scientia Horticulturae, 103(4), 453-460. doi:10.1016/j.scienta.2004.06.011Urrestarazu, M., Mazuela, P. C., & Martínez, G. A. (2008). Effect of Substrate Reutilization on Yield and Properties of Melon and Tomato Crops. Journal of Plant Nutrition, 31(11), 2031-2043. doi:10.1080/01904160802405420Valverde, M., Madrid, R., García, A. L., Del Amor, F. M., & Rincón, L. F. (2013). Use of almond shell and almond hull as substrates for sweet pepper cultivation. Effects on fruit yield and mineral content. Spanish Journal of Agricultural Research, 11(1), 164. doi:10.5424/sjar/2013111-3566Heschel, W., & Klose, E. (1995). On the suitability of agricultural by-products for the manufacture of granular activated carbon. Fuel, 74(12), 1786-1791. doi:10.1016/0016-2361(95)80009-7Hayashi, J., Horikawa, T., Takeda, I., Muroyama, K., & Nasir Ani, F. (2002). Preparing activated carbon from various nutshells by chemical activation with K2CO3. Carbon, 40(13), 2381-2386. doi:10.1016/s0008-6223(02)00118-5Urruzola, I., Robles, E., Serrano, L., & Labidi, J. (2014). Nanopaper from almond (Prunus dulcis) shell. Cellulose, 21(3), 1619-1629. doi:10.1007/s10570-014-0238-yErdem İşmal, Ö., Yıldırım, L., & Özdoğan, E. (2014). Use of almond shell extracts plus biomordants as effective textile dye. Journal of Cleaner Production, 70, 61-67. doi:10.1016/j.jclepro.2014.01.055Galanakis, C. M. (2012). Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends in Food Science & Technology, 26(2), 68-87. doi:10.1016/j.tifs.2012.03.003Soto, M. L., Moure, A., Domínguez, H., & Parajó, J. C. (2011). Recovery, concentration and purification of phenolic compounds by adsorption: A review. Journal of Food Engineering, 105(1), 1-27. doi:10.1016/j.jfoodeng.2011.02.010Liu, X., Tang, Y., Wei, S., Yu, H., Lv, H., & Ge, H. (2010). ISOLATION AND PURIFICATION OF PHENOLIC COMPOUNDS FROM MAGNOLIAE OFFICINALIS BY PREPARATIVE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY. Journal of Liquid Chromatography & Related Technologies,

    Efeito da rega e da aplicação de caulino nas características sensoriais e parâmetros de biometria da amêndoa

    Get PDF
    Em Portugal, a amêndoa é uma cultura tradicional, que se encontra distribuída pelas regiões do Alentejo, Algarve e Trás-os-Montes, sendo, juntamente com a castanha, a mais produzida dos frutos de casca rija. Os amendoais são geralmente tradicionais, de sequeiro, sem técnicas de cultivo adequadas, o que leva a um baixo rendimento de produção. A produtividade, bem como a qualidade dos frutos, podem aumentar com a utilização das técnicas culturais como a irrigação e aplicação de substâncias, como o caulino, para mitigação dos efeitos de stresse estival. No presente estudo, diferentes regimes de rega (100% de ETC, 70% de ETC, 35% de ETC, 100%-35% de ETC, controlo sem rega) e caulino (4%) foram aplicados durante o verão de 2015, em amendoeiras da cultivar Ferragnés situadas no Norte de Portugal (Alfândega da Fé). Foram avaliados os efeitos destes tratamentos na biometria do fruto, nas características sensoriais, no rendimento de produção e na produtividade. Verificou-se que, no caso das amendoeiras regadas com 100% de ETC, se obteve uma maior produtividade, apesar de os parâmetros da biometria das amêndoas se terem revelado mais baixos. A maior ou menor disponibilidade de água forneceram às amêndoas atributos sensoriais que as diferenciam. Assim, a rega a 35% e 100%, tornaram as amêndoas mais doces, ao passo que a falta de água (sem rega), tornou as amêndoas mais rugosas. A presença de caulino nas folhas e "rega- 70% ou 100-35%" favoreceu a cor mais escura e a dureza dos frutos em estudo.Trabalho realizado no âmbito do projecto ProDer "Estratégias Integradas para o aumento da produtividade da amendoeira em Trás-os-Montes, nº 54609.info:eu-repo/semantics/publishedVersio

    Biological flora of Central Europe: Cyperus esculentus L

    Full text link
    This paper presents information on all aspects of the biology of Cyperus esculentus L. (yellow nutsedge) and deals with its taxonomy, morphology, genetic diversity, distribution, habitat requirements, ecology and life cycle, with special emphasis on uses and cultivation, history of introduction, impact and management in Europe. C. esculentus is a tuber geophyte and most likely originates from the Mediterranean and Southwest Asia. It is a variable plant and four wild-type varieties are presently recognized, in addition to a cultivated form. C. esculentus reproduces primarily by its underground tubers, although abundant seeds are produced. In temperate climates, tubers usually sprout in late spring and the plant withers at the beginning of the winter. C. esculentus is only cultivated in the València region in Spain. Invasion foci emerged across Europe at the beginning of the 1980s and at present, C. esculentus is most abundant on arable land and in ruderal habitats, followed by riverine vegetation. In heavily infested regions of Europe, C. esculentus causes substantial yield losses in field crops and although different management strategies are available, C. esculentus remains difficult to control.Follak, S.; Belz, R.; Bohren, C.; Castro, OD.; Guacchio, ED.; Pascual-Seva, N.; Schwarz, M.... (2016). Biological flora of Central Europe: Cyperus esculentus L. Perspectives in Plant Ecology, Evolution and Systematics. 23:33-51. doi:10.1016/j.ppees.2016.09.003S33512

    Irrigation deficit turns almond by-products into a valuable source of antimicrobial (poly)phenols

    Full text link
    [EN] Almond (Prunus dulcis (Mill.) D. A. Webb) production keeps an increasing trend worldwide, leading to augment in generation of harmful by-products that should be valorized as a source of bioactive phytochemicals with application in the development of new added-value products. The assessment of almond hulls and skins on their (poly)phenolic composition was developed upon two seasons, under five irrigation regimes, regarding total phenolics, flavonoids, and ortho-diphenols, as well as individual phenolic compounds analyzed by High Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD). As functional tests, extracts were assessed on their radical scavenging activity in vitro and reducing power, and screened on their antimicrobial activity against multidrug resistant bacterial pathogens. The phenolic profile and antioxidant activities were evaluated in blanching water as well. Naringenin-7-O-glucoside and isorhamnetin-3-O-rutinoside were the most abundant phenolics in almond hulls and skins. Influence of irrigation treatments and season on phenolic content differed among by-products; hulls being more influenced by irrigation and skins by the agro-climatic conditions. The synthesis of individual phenolics was more influenced by season than treatment. According to the chemical and biological correlations, the presence of (poly)phenols seems to be responsible for the antioxidant and antimicrobial properties revealed. The knowledge generated upon the present work contributes to understand the variability of almond by-products composition attributable to seasonal and irrigation conditions, and to envisage valorization alternatives for these under explored residues and blanching water.IP acknowledges the financial support provided by the FCT-Portuguese Foundation for Science and Technology (SFRH/BD/52539/2014), under the Doctoral Programme Agricultural Production Chains from fork to farm (PD/00122/2012). This work was also supported by National Funds by FCT - Portuguese Foundation for Science and Technology, under the project UID/AGR/04033/2019. RDP was supported by a Postdoctoral Contract (Juan de la Cierva de Incorporación ICJI-2015-25373) from the Ministry of Economy, Industry and Competitiveness of Spain.Prgomet, I.; Gonçalves, B.; Domínguez-Perles, R.; Santos, R.; Saavedra, MJ.; Aires, A.; Pascual-Seva, N.... (2019). Irrigation deficit turns almond by-products into a valuable source of antimicrobial (poly)phenols. Industrial Crops and Products. 132:186-196. https://doi.org/10.1016/j.indcrop.2019.02.024S18619613

    Kaolin, Ascophyllum nodosum

    No full text
    This is the peer reviewed version of the following article: Cabo, S., Aires, A., Carvalho, R., Vilela, A., Pascual-Seva, N., Silva, A.P. and Gonçalves, B. (2021), Kaolin, Ascophyllum nodosum and salicylic acid mitigate effects of summer stress improving hazelnut quality. J Sci Food Agric, 101: 459-475, which has been published in final form at https://doi.org/10.1002/jsfa.10655. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] BACKGROUND Various strategies are needed to mitigate the negative impact on or to increase fruit quality. The effect of spraying kaolin (K),Ascophyllum nodosum(An) and salicylic acid (SA), in trees with and without irrigation, on quality and sensorial attributes of hazelnut (Grada de Viseu cultivar) was investigated during two consecutive years (2016 and 2017) in a commercial orchard located in Moimenta da Beira, Portugal. RESULTS The treatments affected positively the biometric parameters nut and kernel weight, length, width, thickness and volume as well as the vitamin E level, antioxidant activity and content of some individual phenolics, such as protocatechuic acid, gallocatechin, catechin and epicatechin. The levels of amino acids in hazelnut kernels decreased in all the assayed treatments, while the kernel colour and sensorial attributes were not affected by the treatments. Hazelnut physical properties (nut and kernels), chemical and phytochemical composition and antioxidant activities were positively related. CONCLUSIONS The application of K, An and SA improved the hazelnut tree response to climate change, without compromising the hazelnut chemical and sensorial quality. Furthermore, due to the similar observations for the same treatments with and without irrigation, it can be stated that K, An and SA can be efficient and cost-effective tools to mitigate summer stress in rain-fed orchards.One of the authors (SC) acknowledges financial support by the Portuguese Foundation for Science and Technology (FCT) (PB/BD/113615/2015) under the Doctoral Programme 'Agricultural production chains - from fork to farm' (PD/00122/2012). The authors also acknowledge financial support provided by National Funds from FCT, under the projects UID/AGR/04033/2019 and UID/QUI/00616/2019. The authors acknowledge financial support of INTERACT project 'Integrative research in environment, agro-chains and technology', no. NORTE-01-0145-FEDER-000017, in its line of research entitled ISAC, co-financed by the European Regional Development Fund (ERDF) through NORTE 2020 (North Regional Operational Program 2014/2020). The authors are grateful to Francisco Oliva Teles for providing access to his orchard, Cristiana Teixeira, Iva Prgomet, Ivo Oliveira, Maria Cristina Morais, Silvia Afonso and Sofia Correia for their support in collecting nut samples in the orchard and to the Tasting Panel of ECVA-DeBA (UTAD) that participated in the sensory trials.Cabo, S.; Aires, A.; Carvalho, R.; Vilela, A.; Pascual-Seva, N.; Silva, AP.; Gonçalves, B. (2021). Kaolin,Ascophyllum nodosumand salicylic acid mitigate effects of summer stress improving hazelnut quality. Journal of the Science of Food and Agriculture. 101:459-475. https://doi.org/10.1002/jsfa.1065545947510
    corecore