268 research outputs found

    BIOMECHANICAL ANALYSIS OF THE HANDBALL IN AUSTRALIAN FOOTBALL

    Get PDF
    The handball pass in Australian Football has become increasingly important in recent years. However, important technical elements of handballing have not been identified in the scientific literature. The purposes of this study were to provide a descriptive analysis of the handball through the evaluation of a player considered to have good technique, to compare handballs for maximal speed and accuracy, and to compare preferred and non-preferred hands. Three-dimensional data were collected from one elite level Australian Football player using Optotrak Certus. The player performed three handballs for maximal speed and three handballs for accuracy with both the preferred and non-preferred hand. Linear hand speed, linear shoulder speed, shoulder angular velocity and elbow angular velocity were larger in the maximal speed condition. Differences in the development of hand speed were found for preferred and non-preferred hands

    Impact of the assimilation of ozone from the Tropospheric Emission Spectrometer on surface ozone across North America

    Get PDF
    We examine the impact of assimilating ozone observations from the Tropospheric Emission Spectrometer (TES) on North American surface ozone abundances in the GEOS-Chem model in August 2006. The assimilation reduces the negative bias in the modeled free tropospheric ozone, which enhances the ozone flux into the boundary layer. Surface ozone abundances increased by as much as 9 ppb in western North America and by less than 2 ppb in the southeast, resulting in a total background source of ozone of 20-40 ppb. The enhanced ozone in the model reduced the model bias with respect to surface ozone observations in the western USA, but exacerbated it in the east. This increase in the bias in the boundary layer in the east, despite the agreement between the assimilation and ozonesonde measurements in the free troposphere, suggests errors in the ozone sources or sinks or in boundary layer mixing in the model. © 2009

    The vertical distribution of ozone instantaneous radiative forcing from satellite and chemistry climate models

    Get PDF
    We evaluate the instantaneous radiative forcing (IRF) of tropospheric ozone predicted by four state-of-the-art global chemistry climate models (AM2-Chem, CAM-Chem, ECHAM5-MOZ, and GISS-PUCCINI) against ozone distribution observed from the NASA Tropospheric Emission Spectrometer (TES) during August 2006. The IRF is computed through the application of an observationally constrained instantaneous radiative forcing kernels (IRFK) to the difference between TES and model-predicted ozone. The IRFK represent the sensitivity of outgoing longwave radiation to the vertical and spatial distribution of ozone under all-sky condition. Through this technique, we find total tropospheric IRF biases from -0.4 to + 0.7 W/m(2) over large regions within the tropics and midlatitudes, due to ozone differences over the region in the lower and middle troposphere, enhanced by persistent bias in the upper troposphere-lower stratospheric region. The zonal mean biases also range from -30 to + 50 mW/m(2) for the models. However, the ensemble mean total tropospheric IRF bias is less than 0.2 W/m(2) within the entire troposphere

    An emerging role for NAADP-mediated Ca2+ signaling in the pancreatic beta-cell

    Get PDF
    Several recent reports, including one in this journal, have reignited the debate about whether the calcium-mobilizing messenger, nicotinic adenine nucleotide diphosphate (NAADP) plays a central role in the regulation of calcium signalling in pancreatic β-cell. These studies have highlighted a role for NAADP-induced Ca(2+) mobilization not only in mediating the effects of the incretin, GLP-1 and the autocrine proliferative effects of insulin, but also possibly a fundamental role in glucose-mediated insulin secretion in the pancreatic β-cell

    The influence of biomass burning on the global distribution of selected non-methane organic compounds

    Get PDF
    Forests fires are a significant source of chemicals to the atmosphere including numerous non-methane organic compounds (NMOCs). We report airborne measurement of hydrocarbons, acetone and methanol from >500 whole air samples collected over Eastern Canada, including interceptions of several different boreal biomass burning plumes. From these and concurrent measurements of carbon monoxide (CO) we derive fire emission ratios for 29 different organic species relative to the emission of CO. These range from 8.9 ± 3.2 ppt ppb<sup>−1</sup> CO for methanol to 0.007 ± 0.004 ppt ppb<sup>−1</sup> CO for cyclopentane. The ratios are in good to excellent agreement with literature values. Using the GEOS-Chem global 3-D chemical transport model (CTM) we show the influence of biomass burning on the global distributions of benzene, toluene, ethene and propene (species which are controlled for air quality purposes and sometimes used as indicative tracers of anthropogenic activity). Using our observationally derived emission ratios and the GEOS-Chem CTM, we show that biomass burning can be the largest fractional contributor to observed benzene, toluene, ethene and propene levels in many global locations. The widespread biomass burning contribution to atmospheric benzene, a heavily regulated air pollutant, suggests that pragmatic approaches are needed when setting air quality targets as tailpipe and solvent emissions decline in developed countries. We subsequently determine the extent to which the 28 global-status World Meteorological Organisation – Global Atmosphere Watch stations worldwide are influenced by biomass burning sourced benzene, toluene, ethene and propene as compared to their exposure to anthropogenic emissions

    Extending methane profiles from aircraft into the stratosphere for satellite total column validation: A comparative analysis of different data sources

    Get PDF
    Airborne observations of greenhouse gases are a very useful reference for validation of satellite-based column averaged dry air mole fraction data. However, since the aircraft data are available only up to about 9-13 km altitude, these profiles do not fully represent the depth of the atmosphere observed by satellites and therefore need to be extended synthetically into the stratosphere. In the near future, observations of CO₂ and CH₄ made from passenger aircraft are expected to be available through the In-Service Aircraft for a Global Observing System (IAGOS) project. In this study, we analyse three different data sources that are available for the stratospheric extension of aircraft profiles by comparing the error introduced by each of them into the total column and provide recommendations regarding the best approach. First, we analyse CH₄ fields from two different models of atmospheric composition - the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System for Composition (C-IFS) and the TOMCAT/SLIMCAT 3-D 20 chemical transport model. Secondly, we consider scenarios that simulate the effect of using CH₄ climatologies such as those based on balloons or satellite limb soundings. Thirdly, we assess the impact of using a-priori profiles used in the satellite retrievals for the stratospheric part of the total column. We find that the models considered in this study have a better estimation of the stratospheric CH₄ as compared to the climatology-based data and the satellite a-priori profiles. Both the C-IFS and TOMCAT models have a bias of about -9 ppb at the locations where tropospheric vertical profiles will be measured 25 by IAGOS. The C-IFS model, however, has a lower random error (6.5 ppb) than TOMCAT (12.8 ppb). These values are well within the minimum desired accuracy and precision of satellite total column XCH₄ retrievals (10 ppb and 34 ppb, respectively). In comparison, the a-priori profile from the University of Leicester Greenhouse Gases Observing Satellite (GOSAT) Proxy XCH₄ retrieval and climatology-based data introduce larger random errors in the total column, being limited in spatial coverage and temporal variability. Furthermore, we find that the bias in the models varies with latitude and season. Therefore, applying appropriate bias correction to the model fields before using them for profile extension is expected to further decrease the error contributed by the stratospheric part of the profile to the total column

    Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) experiment: design, execution and science overview

    Get PDF
    We describe the design and execution of the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) experiment, which has the overarching objective of understanding the chemical aging of air masses that contain the emission products from seasonal boreal wildfires and how these air masses subsequently impact downwind atmospheric composition. The central focus of the experiment was a two-week deployment of the UK BAe-146-301 Atmospheric Research Aircraft (ARA) over eastern Canada, based out of Halifax, Nova Scotia. Atmospheric ground-based and sonde measurements over Canada and the Azores associated with the planned July 2010 deployment of the ARA, which was postponed by 12 months due to UK-based flights related to the dispersal of material emitted by the Eyjafjallajökull volcano, went ahead and constituted phase A of the experiment. Phase B of BORTAS in July 2011 involved the same atmospheric measurements, but included the ARA, special satellite observations and a more comprehensive ground-based measurement suite. The high-frequency aircraft data provided a comprehensive chemical snapshot of pyrogenic plumes from wildfires, corresponding to photochemical (and physical) ages ranging from 45 sr 10 days, largely by virtue of widespread fires over Northwestern Ontario. Airborne measurements reported a large number of emitted gases including semi-volatile species, some of which have not been been previously reported in pyrogenic plumes, with the corresponding emission ratios agreeing with previous work for common gases. Analysis of the NOy data shows evidence of net ozone production in pyrogenic plumes, controlled by aerosol abundance, which increases as a function of photochemical age. The coordinated ground-based and sonde data provided detailed but spatially limited information that put the aircraft data into context of the longer burning season in the boundary layer. Ground-based measurements of particulate matter smaller than 2.5 μm (PM2.5) over Halifax show that forest fires can on an episodic basis represent a substantial contribution to total surface PM2.5
    corecore