373 research outputs found
Asymmetric Lineshape due to Inhomogeneous Broadening of the Crystal-Field Transitions in Mn12ac Single Crystals
The lineshape of crystal-field transitions in single crystals of Mn12ac
molecular magnets is determined by the magnetic history. The absorption lines
are symmetric and Gaussian for the non-magnetized state obtained by zero-field
cooling (zfc). In the magnetized state which is reached when the sample is
cooled in a magnetic field (fc), however, they are asymmetric even in the
absence of an external magnetic field. These observations are quantitatively
explained by inhomogeneous symmetrical (Gaussian) broadening of the
crystal-field transitions combined with a contribution of off-diagonal
components of the magnetic susceptibility to the effective magnetic
permeability.Comment: 4 pages, 3 figure
Detailed single crystal EPR lineshape measurements for the single molecule magnets Fe8Br and Mn12-ac
It is shown that our multi-high-frequency (40-200 GHz) resonant cavity
technique yields distortion-free high field EPR spectra for single crystal
samples of the uniaxial and biaxial spin S = 10 single molecule magnets (SMMs)
[Mn12O12(CH3COO)16(H2O)4].2CH3COOH.4H2O and [Fe8O2(OH)12(tacn)6]Br8.9H2O. The
observed lineshapes exhibit a pronounced dependence on temperature, magnetic
field, and the spin quantum numbers (Ms values) associated with the levels
involved in the transitions. Measurements at many frequencies allow us to
separate various contributions to the EPR linewidths, including significant
D-strain, g-strain and broadening due to the random dipolar fields of
neighboring molecules. We also identify asymmetry in some of the EPR lineshapes
for Fe8, and a previously unobserved fine structure to some of the EPR lines
for both the Fe8 and Mn12 systems. These findings prove relevant to the
mechanism of quantum tunneling of magnetization in these SMMs.Comment: Phys. Rev. B, accepted with minor revision
Quantum dynamics of crystals of molecular nanomagnets inside a resonant cavity
It is shown that crystals of molecular nanomagnets exhibit enhanced magnetic
relaxation when placed inside a resonant cavity. Strong dependence of the
magnetization curve on the geometry of the cavity has been observed, providing
evidence of the coherent microwave radiation by the crystals. A similar
dependence has been found for a crystal placed between Fabry-Perot
superconducting mirrors. These observations open the possibility of building a
nanomagnetic microwave laser pumped by the magnetic field
Eureka and beyond: mining's impact on African urbanisation
This collection brings separate literatures on mining and urbanisation together at a time when both artisanal and large-scale mining are expanding in many African economies. While much has been written about contestation over land and mineral rights, the impact of mining on settlement, notably its catalytic and fluctuating effects on migration and urban growth, has been largely ignored. African nation-states’ urbanisation trends have shown considerable variation over the past half century. The current surge in ‘new’ mining countries and the slow-down in ‘old’ mining countries are generating some remarkable settlement patterns and welfare outcomes. Presently, the African continent is a laboratory of national mining experiences. This special issue on African mining and urbanisation encompasses a wide cross-section of country case studies: beginning with the historical experiences of mining in Southern Africa (South Africa, Zambia, Zimbabwe), followed by more recent mineralizing trends in comparatively new mineral-producing countries (Tanzania) and an established West African gold producer (Ghana), before turning to the influence of conflict minerals (Angola, the Democratic Republic of Congo and Sierra Leone)
Global Search for New Physics with 2.0/fb at CDF
Data collected in Run II of the Fermilab Tevatron are searched for
indications of new electroweak-scale physics. Rather than focusing on
particular new physics scenarios, CDF data are analyzed for discrepancies with
the standard model prediction. A model-independent approach (Vista) considers
gross features of the data, and is sensitive to new large cross-section
physics. Further sensitivity to new physics is provided by two additional
algorithms: a Bump Hunter searches invariant mass distributions for "bumps"
that could indicate resonant production of new particles; and the Sleuth
procedure scans for data excesses at large summed transverse momentum. This
combined global search for new physics in 2.0/fb of ppbar collisions at
sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D
Rapid Communication
Observation of Orbitally Excited B_s Mesons
We report the first observation of two narrow resonances consistent with
states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar
collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the
Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed
as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+,
\bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1})
= 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let
Potent and broad HIV-neutralizing antibodies in memory B cells and plasma
Induction of broadly neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development. Antibody 10E8, reactive with the distal portion of the membrane-proximal external region (MPER) of HIV-1 gp41, is broadly neutralizing. However, the ontogeny of distal MPER antibodies and the relationship of memory B cell to plasma bnAbs are poorly understood. HIV-1–specific memory B cell flow sorting and proteomic identification of anti-MPER plasma antibodies from an HIV-1–infected individual were used to isolate broadly neutralizing distal MPER bnAbs of the same B cell clonal lineage. Structural analysis demonstrated that antibodies from memory B cells and plasma recognized the envelope gp41 bnAb epitope in a distinct orientation compared with other distal MPER bnAbs. The unmutated common ancestor of this distal MPER bnAb was autoreactive, suggesting lineage immune tolerance control. Construction of chimeric antibodies of memory B cell and plasma antibodies yielded a bnAb that potently neutralized most HIV-1 strains
Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly
Measurement of the ttbar Production Cross Section in ppbar collisions at sqrt s = 1.96 TeV in the All Hadronic Decay Mode
We report a measurement of the ttbar production cross section using the
CDF-II detector at the Fermilab Tevatron. The analysis is performed using 311
pb-1 of ppbar collisions at sqrt(s)=1.96 TeV. The data consist of events
selected with six or more hadronic jets with additional kinematic requirements.
At least one of these jets must be identified as a b-quark jet by the
reconstruction of a secondary vertex. The cross section is measured to be
sigma(tbart)=7.5+-2.1(stat.)+3.3-2.2(syst.)+0.5-0.4(lumi.) pb, which is
consistent with the standard model prediction.Comment: By CDF collaboratio
Search for chargino-neutralino production in ppbar collisions at sqrt(s) = 1.96 TeV
We present the results of a search for associated production of the chargino
and neutralino supersymmetric particles using up to 1.1 fb-1 of integrated
luminosity collected by the CDF II experiment at the Tevatron ppbar collider at
a center-of-mass energy of 1.96 TeV. The search is conducted by analyzing
events with a large transverse momentum imbalance and either three charged
leptons or two charged leptons of the same electric charge. The numbers of
observed events are found to be consistent with standard model expectations.
Upper limits on the production cross section are derived in different
theoretical models. In one of these models a lower limit on the mass of the
chargino is set at 129 GeV/c^2 at the 95% confidence level.Comment: To be submitted to Phys.Rev.Let
- …