19 research outputs found

    Sexually transmitted diseases and infertility

    Get PDF
    Female infertility, including tubal factor infertility, is a major public health concern worldwide. Most cases of tubal factor infertility are attributable to untreated sexually transmitted diseases that ascend along the reproductive tract and are capable of causing tubal inflammation, damage, and scarring. Evidence has consistently demonstrated the effects of Chlamydia trachomatis and Neisseria gonorrhoeae as pathogenic bacteria involved in reproductive tract morbidities including tubal factor infertility and pelvic inflammatory disease. There is limited evidence in the medical literature that other sexually transmitted organisms, including Mycoplasma genitalium, Trichomonas vaginalis, and other microorganisms within the vaginal microbiome, may be important factors involved in the pathology of infertility. Further investigation into the vaginal microbiome and other potential pathogens is necessary to identify preventable causes of tubal factor infertility. Improved clinical screening and prevention of ascending infection may provide a solution to the persistent burden of infertility

    Diverse sediment microbiota shape methane emission temperature sensitivity in Arctic lakes

    Get PDF
    Northern post-glacial lakes are significant, increasing sources of atmospheric carbon through ebullition (bubbling) of microbially-produced methane (CH4) from sediments. Ebullitive CH4 flux correlates strongly with temperature, reflecting that solar radiation drives emissions. However, here we show that the slope of the temperature-CH4 flux relationship differs spatially across two post-glacial lakes in Sweden. We compared these CH4 emission patterns with sediment microbial (metagenomic and amplicon), isotopic, and geochemical data. The temperature-associated increase in CH4 emissions was greater in lake middles—where methanogens were more abundant—than edges, and sediment communities were distinct between edges and middles. Microbial abundances, including those of CH4-cycling microorganisms and syntrophs, were predictive of porewater CH4 concentrations. Results suggest that deeper lake regions, which currently emit less CH4 than shallower edges, could add substantially to CH4 emissions in a warmer Arctic and that CH4 emission predictions may be improved by accounting for spatial variations in sediment microbiota

    A climatic dipole drives short- and long-term patterns of postfire forest recovery in the western United States

    No full text
    Researchers are increasingly examining patterns and drivers of postfire forest recovery amid growing concern that climate change and intensifying fires will trigger ecosystem transformations. Diminished seed availability and postfire drought have emerged as key constraints on conifer recruitment. However, the spatial and temporal extent to which recurring modes of climatic variability shape patterns of postfire recovery remain largely unexplored. Here, we identify a north-south dipole in annual climatic moisture deficit anomalies across the Interior West of the US and characterize its influence on forest recovery from fire. We use annually resolved establishment models from dendrochronological records to correlate this climatic dipole with short-term postfire juvenile recruitment. We also examine longer-term recovery trajectories using Forest Inventory and Analysis data from 989 burned plots. We show that annual postfire ponderosa pine recruitment probabilities in the northern Rocky Mountains (NR) and the southwestern US (SW) track the strength of the dipole, while declining overall due to increasing aridity. This indicates that divergent recovery trajectories may be triggered concurrently across large spatial scales: favorable conditions in the SW can correspond to drought in the NR that inhibits ponderosa pine establishment, and vice versa. The imprint of this climatic dipole is manifest for years postfire, as evidenced by dampened long-term likelihoods of juvenile ponderosa pine presence in areas that experienced postfire drought. These findings underscore the importance of climatic variability at multiple spatiotemporal scales in driving cross-regional patterns of forest recovery and have implications for understanding ecosystem transformations and species range dynamics under global change

    Diverse Arctic lake sediment microbiota shape methane emission temperature sensitivity.

    No full text
    Northern post-glacial lakes are a significant and increasing source of atmospheric carbon (C), largely through ebullition (bubbling) of microbially-produced methane (CH4) from the sediments1. Ebullitive CH4 flux correlates strongly with temperature, suggesting that solar radiation is the primary driver of these CH4 emissions2. However, here we show that the slope of the temperature-CH4 flux relationship differs spatially, both within and among lakes.Hypothesizing that differences in microbiota could explain this heterogeneity, we compared site-specific CH4 emissions with underlying sediment microbial (metagenomic and amplicon), isotopic, and geochemical data across two post-glacial lakes in Northern Sweden. The temperature-associated increase in CH4 emissions was greater in lake middles—where methanogens were more abundant—than edges, and sediment microbial communities were distinct between lake edges and middles. Although CH4 emissions projections are typically driven by abiotic factors1, regression modeling revealed that microbial abundances, including those of CH4-cycling microorganisms and syntrophs that generate H2 for methanogenesis, can be useful predictors of porewater CH4 concentrations. Our results suggest that deeper lake regions, which currently emit less CH4 than shallower edges, could add substantially to overall CH4 emissions in a warmer Arctic with longer ice-free seasons and that future CH4 emission predictions from northern lakes may be improved by accounting for spatial variations in sediment microbiota

    Diverse sediment microbiota shape methane emission temperature sensitivity in Arctic lakes

    Get PDF
    Northern post-glacial lakes are significant, increasing sources of atmospheric carbon through ebullition (bubbling) of microbially-produced methane (CH4) from sediments. Ebullitive CH4 flux correlates strongly with temperature, reflecting that solar radiation drives emissions. However, here we show that the slope of the temperature-CH4 flux relationship differs spatially across two post-glacial lakes in Sweden. We compared these CH4 emission patterns with sediment microbial (metagenomic and amplicon), isotopic, and geochemical data. The temperature-associated increase in CH4 emissions was greater in lake middles-where methanogens were more abundant-than edges, and sediment communities were distinct between edges and middles. Microbial abundances, including those of CH4-cycling microorganisms and syntrophs, were predictive of porewater CH4 concentrations. Results suggest that deeper lake regions, which currently emit less CH4 than shallower edges, could add substantially to CH4 emissions in a warmer Arctic and that CH4 emission predictions may be improved by accounting for spatial variations in sediment microbiota.</p
    corecore