22 research outputs found

    Erratum to: Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Action Plan B3: Area 5).

    Get PDF
    [This corrects the article DOI: 10.1186/s13601-016-0116-9.]

    Erratum to: Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Action Plan B3: Area 5).

    Get PDF
    [This corrects the article DOI: 10.1186/s13601-016-0116-9.]

    IL-18 associated with lung lymphoid aggregates drives IFNγ production in severe COPD

    No full text
    Background: Increased interferon gamma (IFNγ) release occurs in Chronic Obstructive Pulmonary Disease (COPD) lungs. IFNγ supports optimal viral clearance, but if dysregulated could increase lung tissue destruction. Methods: The present study investigates which mediators most closely correlate with IFNγ in sputum in stable and exacerbating disease, and seeks to shed light on the spatial requirements for innate production of IFNγ, as reported in mouse lymph nodes, to observe whether such microenvironmental cellular organisation is relevant to IFNγ production in COPD lung. Results: We show tertiary follicle formation in severe disease alters the dominant mechanistic drivers of IFNγ production, because cells producing interleukin-18, a key regulator of IFNγ, are highly associated with such structures. Interleukin-1 family cytokines correlated with IFNγ in COPD sputum. We observed that the primary source of IL-18 in COPD lungs was myeloid cells within lymphoid aggregates and IL-18 was increased in severe disease. IL-18 released from infected epithelium or from activated myeloid cells, was more dominant in driving IFNγ when IL-18-producing and responder cells were in close proximity. Conclusions: Unlike tight regulation to control infection spread in lymphoid organs, this local interface between IL-18-expressing and responder cell is increasingly supported in lung as disease progresses, increasing its potential to increase tissue damage via IFNγ

    A novel in vitro metric predicts in vivo efficacy of inhaled silver-based antimicrobials in a murine Pseudomonas aeruginosa pneumonia model

    No full text
    Abstract To address the escalating problem of antimicrobial resistance and the dwindling antimicrobial pipeline, we have developed a library of novel aerosolizable silver-based antimicrobials, particularly for the treatment of pulmonary infections. To rapidly screen this library and identify promising candidates, we have devised a novel in vitro metric, named the “drug efficacy metric” (DEM), which integrates both the antibacterial activity and the on-target, host cell cytotoxicity. DEMs calculated using an on-target human bronchial epithelial cell-line correlates well (R2 > 0.99) with in vivo efficacy, as measured by median survival hours in a Pseudomonas aeruginosa pneumonia mouse model following aerosolized antimicrobial treatment. In contrast, DEMs derived using off-target primary human dermal fibroblasts correlate poorly (R2 = 0.0595), which confirms our hypothesis. SCC1 and SCC22 have been identified as promising drug candidates through these studies, and SCC22 demonstrates a dose-dependent survival advantage compared to sham treatment. Finally, silver-bearing biodegradable nanoparticles were predicted to exhibit excellent in vivo efficacy based on its in vitro DEM value, which was confirmed in our mouse pneumonia model. Thus, the DEM successfully predicted the efficacy of various silver-based antimicrobials, and may serve as an excellent tool for the rapid screening of potential antimicrobial candidates without the need for extensive animal experimentation

    BiP Clustering Facilitates Protein Folding in the Endoplasmic Reticulum

    No full text
    <div><p>The chaperone BiP participates in several regulatory processes within the endoplasmic reticulum (ER): translocation, protein folding, and ER-associated degradation. To facilitate protein folding, a cooperative mechanism known as entropic pulling has been proposed to demonstrate the molecular-level understanding of how multiple BiP molecules bind to nascent and unfolded proteins. Recently, experimental evidence revealed the spatial heterogeneity of BiP within the nuclear and peripheral ER of <i>S. cerevisiae</i> (commonly referred to as ‘clusters’). Here, we developed a model to evaluate the potential advantages of accounting for multiple BiP molecules binding to peptides, while proposing that BiP's spatial heterogeneity may enhance protein folding and maturation. Scenarios were simulated to gauge the effectiveness of binding multiple chaperone molecules to peptides. Using two metrics: folding efficiency and chaperone cost, we determined that the single binding site model achieves a higher efficiency than models characterized by multiple binding sites, in the absence of cooperativity. Due to entropic pulling, however, multiple chaperones perform in concert to facilitate the resolubilization and ultimate yield of folded proteins. As a result of cooperativity, multiple binding site models used fewer BiP molecules and maintained a higher folding efficiency than the single binding site model. These <i>insilico</i> investigations reveal that clusters of BiP molecules bound to unfolded proteins may enhance folding efficiency through cooperative action via entropic pulling.</p></div

    Birch pollen allergy in Europe

    No full text
    Birch and other related trees of the families Betulaceae and Fagaceae (alder, hazel, oak, hornbeam, chestnut, and beech) constitute the birch homologous group. This grouping is primarily based on the extensive IgE cross-reactivity of allergen homologs to the major birch allergen Bet v 1. Birch pollen is the most dominant tree pollen in Northern and Central Europe and is a major cause of allergic rhinitis and, possibly, asthma symptoms. Over the last few decades, levels of birch pollen have risen and the period of exposure has increased due to climate changes. Subsequently, the prevalence of birch pollen sensitization has also increased. The cross-reactivity and sequential pollen seasons within the birch homologous group create a prolonged symptomatic allergy period beyond birch pollen alone. Furthermore, many plant food allergens contain homologs to Bet v 1, meaning that the majority of patients with birch pollen allergy suffer from secondary pollen food syndrome (PFS). As a result, the negative impact on health-related quality of life (HRQoL) in patients allergic to birch pollen is significant. The purpose of this manuscript was to narratively review topics of interest such as taxonomy, cross-reactivity, prevalence, clinical relevance, PFS, and HRQoL with regard to birch pollen allergy from a European perspective
    corecore