3,594 research outputs found

    Employing wavelength diversity to improve SOA gain uniformity

    Get PDF
    In this paper, we propose a wavelength diversity technique for the semiconductor optical amplifier (SOA) to improve the gain uniformity for ultra-high speed optical routers. In such routers, fast SOA gain recovery is required to ensure the minimum gain standard deviation and thus leading to reduction in the system power penalty. The SOA is modeled using a segmentation technique and the detailed theoretical analysis for the model is presented. A direct temporal analysis of the impact of the signal wavelength on the SOA gain is investigated. The SOA gain profile when injected with a burst of input Gaussian pulses for a single wavelength and the proposed wavelength diversity technique are investigated. The operation principle is simulated and the results show a reduction in the gain standard deviation (at 1 mW input power) of 13.1, 11, 8.1, 6.2 and 4.8 dB for the data rates of 10, 20, 40, 80 and 160 Gb/s, respectively

    Optimisation of the key SOA parameters for amplification and switching

    Get PDF
    Wireless Sensor Networks (WSN) are composed of small, low cost, resource-constrained computing nodes equipped with low power wireless transceivers. Generally, they are embedded in their environment to perform some specific monitoring and/or control function. Unlike wired networks that have dedicated routers for network connectivity and message forwarding, every node in a WSN can act as a router in a multi-hop network. A WSN can offer a cheap, applicationspecific solution in a variety of situations including military and disaster response scenarios, where other approaches are not viable. Due to their unattended nature and deployment in possibly hostile environmental conditions, there are many challenges in ensuring that a WSN is formed effectively and survives long enough to fulfil its function. Securing a WSN against attack is a particular challenge. Traditional encryption mechanisms are resource hungry and are not sufficient alone to provide a complete solution. This project is concerned with secure routing protocols. Formal methods are used to model and analyse the design of existing protocols and to demonstrate some previously unreported weaknesses

    1 x M packet-switched router based on the PPM header address for all-optical WDM networks

    Get PDF
    This paper presents an all-optical 1xM router architecture for simultaneous multiple-wavelength packet routing, without the need for wavelength conversion. The packet header address is based on the pulse position modulation (PPM) format, which allows the use of only a single-bitwise optical AND gate for fast packet header address correlation. The proposed scheme offers both multicast and broadcast capabilities. We’ve demonstrated a high speed packet routing at 160 Gb/s in simulation, with a low channel crosstalk (CXT) of ~ -27 dB with a channel spacing of > 0.4 THz and a demultiplexer bandwidth of 500 GHz. The output transfer function of the PPM header processing (PPM-HP) module is also investigated in this paper

    Impact of signal wavelength on the semiconductor opticalamplifier gain uniformity for high speed optical routers employing the segmentation model

    Get PDF
    This paper investigates the impact of a train of input Gaussian pulses wavelength on semiconductor optical amplifier (SOA) gain uniformity for high speed applications. In high speed applications, the linear output gain of the input pulses is necessary in order to minimize the gain standard deviation and power penalties. A segmentation model of the SOA is demonstrated to utilize the complete rate equations. The SOA gain profile when injected with a burst of input signal is presented. A direct temporal analysis of the effect of the burst wavelength on the SOA gain and the output gain standard deviation is investigated. The output gain uniformity dependence on the input burst power and wavelength within the C-band spectrum range is analyzed. Results obtained show the proportionality of the peak-gain conditions for the SOA on the nonlinearity of the output gain achieved by the input pulses

    Leveraging community assets to tackle social isolation and loneliness: a needs assessment of the London Borough of Hammersmith & Fulham

    Get PDF
    This study is an investigation of factors that influence the routine adoption and diffusion of evidence-based asset-based community development (ABCD) initiatives to combat social isolation and loneliness in the contemporary setting (using LBH&F as a case study

    Experimental evaluation of impairments in unrepeatered DP-16QAM link with distributed raman amplification

    Get PDF
    The transmission impairments of a Raman amplified link using dual-polarization 16-quadrature amplitude modulation (DP-16QAM) are experimentally characterized. The impact of amplitude and phase noise on the signal due to relative intensity noise (RIN) transfer from the pump are compared for two pumping configurations: first-order backward pumping and bi-directional pumping. Experimental results indicate that with increased Raman backward pump power, though the optical signal-to-noise ratio (OSNR) is increased, so is the pump-induced amplitude and phase noise. The transmission performance is firstly improved by the enhanced OSNR at a low pump power until an optimum point is reached, and then the impairments due to pump-induced noise start to dominate. However, the introduction of a low pump power in the forward direction can further improve the system's performance

    Semi-spectral Chebyshev method in Quantum Mechanics

    Get PDF
    Traditionally, finite differences and finite element methods have been by many regarded as the basic tools for obtaining numerical solutions in a variety of quantum mechanical problems emerging in atomic, nuclear and particle physics, astrophysics, quantum chemistry, etc. In recent years, however, an alternative technique based on the semi-spectral methods has focused considerable attention. The purpose of this work is first to provide the necessary tools and subsequently examine the efficiency of this method in quantum mechanical applications. Restricting our interest to time independent two-body problems, we obtained the continuous and discrete spectrum solutions of the underlying Schroedinger or Lippmann-Schwinger equations in both, the coordinate and momentum space. In all of the numerically studied examples we had no difficulty in achieving the machine accuracy and the semi-spectral method showed exponential convergence combined with excellent numerical stability.Comment: RevTeX, 12 EPS figure

    Photonic Localization of Interface Modes at the Boundary between Metal and Fibonacci Quasi-Periodic Structure

    Full text link
    We investigated on the interface modes in a heterostructure consisting of a semi-infinite metallic layer and a semi-infinite Fibonacci quasi-periodic structure. Various properties of the interface modes, such as their spatial localizations, self-similarities, and multifractal properties are studied. The interface modes decay exponentially in different ways and the modes in the lower stable gap possess highest spatial localization. A localization index is introduced to understand the localization properties of the interface modes. We found that the localization index of the interface modes in the upper stable gap will converge to two slightly different constants according to the parity of the Fibonacci generation. In addition, the localization-delocalization transition is also found in the interface modes of the transient gap.Comment: 20 pages, 5figure

    Feline mammary carcinoma stem cells are tumorigenic, radioresistant, chemoresistant and defective in activation of the ATM/p53 DNA damage pathway

    Get PDF
    AbstractCancer stem cells were identified in a feline mammary carcinoma cell line by demonstrating expression of CD133 and utilising the tumour sphere assay. A population of cells was identified that had an invasive, mesenchymal phenotype, expressed markers of pluripotency and enhanced tumour formation in the NOD-SCID mouse and chick embryo models. This population of feline mammary carcinoma stem cells was resistant to chemotherapy and radiation, possibly due to aberrant activation of the ATM/p53 DNA damage pathway. Epithelial–mesenchymal transition was a feature of the invasive phenotype. These data demonstrate that cancer stem cells are a feature of mammary cancer in cats
    • …
    corecore