350 research outputs found
Placental syncytiotrophoblast constitutes a major barrier to vertical transmission of Listeria monocytogenes.
Listeria monocytogenes is an important cause of maternal-fetal infections and serves as a model organism to study these important but poorly understood events. L. monocytogenes can infect non-phagocytic cells by two means: direct invasion and cell-to-cell spread. The relative contribution of each method to placental infection is controversial, as is the anatomical site of invasion. Here, we report for the first time the use of first trimester placental organ cultures to quantitatively analyze L. monocytogenes infection of the human placenta. Contrary to previous reports, we found that the syncytiotrophoblast, which constitutes most of the placental surface and is bathed in maternal blood, was highly resistant to L. monocytogenes infection by either internalin-mediated invasion or cell-to-cell spread. Instead, extravillous cytotrophoblasts-which anchor the placenta in the decidua (uterine lining) and abundantly express E-cadherin-served as the primary portal of entry for L. monocytogenes from both extracellular and intracellular compartments. Subsequent bacterial dissemination to the villous stroma, where fetal capillaries are found, was hampered by further cellular and histological barriers. Our study suggests the placenta has evolved multiple mechanisms to resist pathogen infection, especially from maternal blood. These findings provide a novel explanation why almost all placental pathogens have intracellular life cycles: they may need maternal cells to reach the decidua and infect the placenta
NFATc1 controls the cytotoxicity of CD8+ T cells
NFAT nuclear translocation has been shown to be required for CD8+ T cell cytokine production in response to viral infection. Here the authors show NFATc1 controls the cytotoxicity and metabolic switching of activated CD8+ T cells required for optimal response to bacteria and tumor cells
Corrigendum: A MALDI-TOF MS library for rapid identification of human commensal gut bacteria from the class; Clostridia
[This corrects the article DOI: 10.3389/fmicb.2023.1104707.]
A MALDI-TOF MS library for rapid identification of human commensal gut bacteria from the class Clostridia
INTRODUCTION: Microbial isolates from culture can be identified using 16S or whole-genome sequencing which generates substantial costs and requires time and expertise. Protein fingerprinting via Matrix-assisted Laser Desorption Ionization-time of flight mass spectrometry (MALDI-TOF MS) is widely used for rapid bacterial identification in routine diagnostics but shows a poor performance and resolution on commensal bacteria due to currently limited database entries. The aim of this study was to develop a MALDI-TOF MS plugin database (CLOSTRI-TOF) allowing for rapid identification of non-pathogenic human commensal gastrointestinal bacteria. METHODS: We constructed a database containing mass spectral profiles (MSP) from 142 bacterial strains representing 47 species and 21 genera within the class Clostridia. Each strain-specific MSP was constructed using >20 raw spectra measured on a microflex Biotyper system (Bruker-Daltonics) from two independent cultures. RESULTS: For validation, we used 58 sequence-confirmed strains and the CLOSTRI-TOF database successfully identified 98 and 93% of the strains, respectively, in two independent laboratories. Next, we applied the database to 326 isolates from stool of healthy Swiss volunteers and identified 264 (82%) of all isolates (compared to 170 (52.1%) with the Bruker-Daltonics library alone), thus classifying 60% of the formerly unknown isolates. DISCUSSION: We describe a new open-source MSP database for fast and accurate identification of the Clostridia class from the human gut microbiota. CLOSTRI-TOF expands the number of species which can be rapidly identified by MALDI-TOF MS
Apoptotic Cells Deliver Processed Antigen to Dendritic Cells for Cross-Presentation
Antigen derived from engulfed apoptotic cells can be cross-presented by dendritic cells (DCs) for the generation of major histocompatibility class I/peptide complexes. While the early events of recognition and internalization of the dying cell have been characterized, the antigen-processing pathway or pathways remain unknown. We established a mouse model assaying for the activation of polyclonal T cells reactive to antigen derived from apoptotic cells, and demonstrated two distinct pathways for the trafficking of exogenous epitopes. In the first, exogenous antigen is dependent on the DC's expression of a functional transporter associated with antigen processing (TAP). Surprisingly, we found evidence that a second pathway exists in which transfer of processed antigen from the dying cell allows formation of major histocompatibility class I/peptide complexes in TAP-deficient DCs. In vivo data suggest that in situations of stress (e.g., viral infection), this latter pathway may be more efficient, illustrating that dying cells may preselect immunologically important antigenic determinants
Evaluation of Facebook and Twitter Monitoring to Detect Safety Signals for Medical Products: An Analysis of Recent FDA Safety Alerts
INTRODUCTION: The rapid expansion of the Internet and computing power in recent years has opened up the possibility of using social media for pharmacovigilance. While this general concept has been proposed by many, central questions remain as to whether social media can provide earlier warnings for rare and serious events than traditional signal detection from spontaneous report data. OBJECTIVE: Our objective was to examine whether specific product–adverse event pairs were reported via social media before being reported to the US FDA Adverse Event Reporting System (FAERS). METHODS: A retrospective analysis of public Facebook and Twitter data was conducted for 10 recent FDA postmarketing safety signals at the drug–event pair level with six negative controls. Social media data corresponding to two years prior to signal detection of each product–event pair were compiled. Automated classifiers were used to identify each ‘post with resemblance to an adverse event’ (Proto-AE), among English language posts. A custom dictionary was used to translate Internet vernacular into Medical Dictionary for Regulatory Activities (MedDRA(®)) Preferred Terms. Drug safety physicians conducted a manual review to determine causality using World Health Organization-Uppsala Monitoring Centre (WHO-UMC) assessment criteria. Cases were also compared with those reported in FAERS. FINDINGS: A total of 935,246 posts were harvested from Facebook and Twitter, from March 2009 through October 2014. The automated classifier identified 98,252 Proto-AEs. Of these, 13 posts were selected for causality assessment of product–event pairs. Clinical assessment revealed that posts had sufficient information to warrant further investigation for two possible product–event associations: dronedarone–vasculitis and Banana Boat Sunscreen--skin burns. No product–event associations were found among the negative controls. In one of the positive cases, the first report occurred in social media prior to signal detection from FAERS, whereas the other case occurred first in FAERS. CONCLUSIONS: An efficient semi-automated approach to social media monitoring may provide earlier insights into certain adverse events. More work is needed to elaborate additional uses for social media data in pharmacovigilance and to determine how they can be applied by regulatory agencies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s40264-016-0491-0) contains supplementary material, which is available to authorized users
Intestinal Inflammation Responds to Microbial Tissue Load Independent of Pathogen/Non-Pathogen Discrimination
The intestinal immune system mounts inflammatory responses to pathogens but tolerates harmless commensal microbiota. Various mechanisms for pathogen/non-pathogen discrimination have been proposed but their general relevance for inflammation control is unclear. Here, we compared intestinal responses to pathogenic Salmonella and non-pathogenic E. coli. Both microbes entered intestinal Peyer’s patches and, surprisingly, induced qualitatively and quantitatively similar initial inflammatory responses revealing a striking discrimination failure. Diverging inflammatory responses only occurred when Salmonella subsequently proliferated and induced escalating neutrophil infiltration, while harmless E. coli was rapidly cleared from the tissue and inflammation resolved. Transient intestinal inflammation induced by harmless E. coli tolerized against subsequent exposure thereby preventing chronic inflammation during repeated exposure. These data revealed a striking failure of the intestinal immune system to discriminate pathogens from harmless microbes based on distinct molecular signatures. Instead, appropriate intestinal responses to gut microbiota might be ensured by immediate inflammatory responses to any rise in microbial tissue loads, and desensitization after bacterial clearance
A Gamma Interferon Independent Mechanism of CD4 T Cell Mediated Control of M. tuberculosis Infection in vivo
CD4 T cell deficiency or defective IFNγ signaling render humans and mice
highly susceptible to Mycobacterium tuberculosis (Mtb)
infection. The prevailing model is that Th1 CD4 T cells produce IFNγ to
activate bactericidal effector mechanisms of infected macrophages. Here we test
this model by directly interrogating the effector functions of Th1 CD4 T cells
required to control Mtb in vivo. While Th1 CD4 T cells specific for the Mtb
antigen ESAT-6 restrict in vivo Mtb growth, this inhibition is independent of
IFNγ or TNF and does not require the perforin or FAS effector pathways.
Adoptive transfer of Th17 CD4 T cells specific for ESAT-6 partially inhibited
Mtb growth while Th2 CD4 T cells were largely ineffective. These results imply a
previously unrecognized IFNγ/TNF independent pathway that efficiently
controls Mtb and suggest that optimization of this alternative effector function
may provide new therapeutic avenues to combat Mtb through vaccination
IL-22 Production Is Regulated by IL-23 During Listeria monocytogenes Infection but Is Not Required for Bacterial Clearance or Tissue Protection
Listeria monocytogenes (LM) is a gram-positive bacterium that is a common contaminant of processed meats and dairy products. In humans, ingestion of LM can result in intracellular infection of the spleen and liver, which can ultimately lead to septicemia, meningitis, and spontaneous abortion. Interleukin (IL)-23 is a cytokine that regulates innate and adaptive immune responses by inducing the production of IL-17A, IL-17F, and IL-22. We have recently demonstrated that the IL-23/IL-17 axis is required for optimal recruitment of neutrophils to the liver, but not the spleen, during LM infection. Furthermore, these cytokines are required for the clearance of LM during systemic infection. In other infectious models, IL-22 induces the secretion of anti-microbial peptides and protects tissues from damage by preventing apoptosis. However, the role of IL-22 has not been thoroughly investigated during LM infection. In the present study, we show that LM induces the production of IL-22 in vivo. Interestingly, IL-23 is required for the production of IL-22 during primary, but not secondary, LM infection. Our findings suggest that IL-22 is not required for clearance of LM during primary or secondary infection, using both systemic and mucosal models of infection. IL-22 is also not required for the protection of LM infected spleens and livers from organ damage. Collectively, these data indicate that IL-22 produced during LM infection must play a role other than clearance of LM or protection of tissues from pathogen- or immune-mediated damage
- …
