18 research outputs found

    Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers

    Get PDF
    Extra-cytoplasmic sugar decoration of glycopolymer components of the bacterial cell wall contributes to their structural diversity. Typically, the molecular mechanism that underpins such a decoration process involves a three-component glycosylation system (TGS) represented by an undecaprenyl-phosphate (Und-P) sugar-activating glycosyltransferase (Und-P GT), a flippase, and a polytopic glycosyltransferase (PolM GT) dedicated to attaching sugar residues to a specific glycopolymer. Here, using bioinformatic analyses, CRISPR-assisted recombineering, structural analysis of cell wall-associated polysaccharides (CWPS) through Maldi-Tof MS and methylation analysis, we report on three such systems in the bacterium Lactococcus lactis. On the basis of sequence similarities, we first identified three gene pairs, csdAB, csdCD, and csdEF, each encoding an Und-P GT and a PolM GT, as potential TGS component candidates. Our experimental results show that csdAB and csdCD are involved in Glc side chain addition on the CWPS components rhamnan and polysaccharide pellicle (PSP), respectively, whereas csdEF plays a role in galactosylation of lipoteichoic acid (LTA). We also identified a potential flippase encoded in the L. lactis genome (llnz_02975, cflA) and confirmed that it participates in the glycosylation of the three cell wall glycopolymers rhamnan, PSP, and LTA, thus indicating that its function is shared by the three TGSs. Finally, we observed that glucosylation of both rhamnan and PSP can increase resistance to bacteriophage predation and that LTA galactosylation alters L. lactis resistance to bacteriocin

    The requirements of a specialist breast centre

    Get PDF
    Abstract This article is an update of the requirements of a specialist breast centre, produced by EUSOMA and endorsed by ECCO as part of Essential Requirements for Quality Cancer Care (ERQCC) programme, and ESMO. To meet aspirations for comprehensive cancer control, healthcare organisations must consider the requirements in this article, paying particular attention to multidisciplinarity and patient-centred pathways from diagnosis, to treatment, to survivorship.Peer reviewe

    A dual-chain assembly pathway generates the high structural diversity of cell-wall polysaccharides in Lactococcus lactisLactococcus\ lactis

    No full text
    International audienceIn Lactococcus lactisLactococcus\ lactis, cell-wall polysaccharides (CWPSs) act as receptors for many bacteriophages, and their structural diversity among strains explains, at least partially, the narrow host range of these viral predators. Previous studies have reported that lactococcal CWPS consists of two distinct components, a variable chain exposed at the bacterial surface, named polysaccharide pellicle (PSP), and a more conserved rhamnan chain anchored to, and embedded inside, peptidoglycan. These two chains appear to be covalently linked to form a large heteropolysaccharide. The molecular machinery for biosynthesis of both components is encoded by a large gene cluster, named cwpscwps. In this study, using a CRISPR/Cas-based method, we performed a mutational analysis of the cwpscwps genes. MALDI-TOF MS-based structural analysis of the mutant CWPS combined with sequence homology, transmission EM, and phage sensitivity analyses enabled us to infer a role for each protein encoded by the cwpscwps cluster. We propose a comprehensive CWPS biosynthesis scheme in which the rhamnan and PSP chains are independently synthesized from two distinct lipid-sugar precursors and are joined at the extracellular side of the cytoplasmic membrane by a mechanism involving a membrane-embedded glycosyltransferase with a GT-C fold. The proposed scheme encompasses a system that allows extracytoplasmic modification of rhamnan by complex substituting oligo-/polysaccharides. It accounts for the extensive diversity of CWPS structures observed among lactococci and may also have relevance to the biosynthesis of complex rhamnose-containing CWPSs in other Gram-positive bacteria

    Host genetic requirements for DNA release of lactococcal phage TP901‐1

    No full text
    Abstract The first step in phage infection is the recognition of, and adsorption to, a receptor located on the host cell surface. This reversible host adsorption step is commonly followed by an irreversible event, which involves phage DNA delivery or release into the bacterial cytoplasm. The molecular components that trigger this latter event are unknown for most phages of Gram‐positive bacteria. In the current study, we present a comparative genome analysis of three mutants of Lactococcus cremoris 3107, which are resistant to the P335 group phage TP901‐1 due to mutations that affect TP901‐1 DNA release. Through genetic complementation and phage infection assays, a predicted lactococcal three‐component glycosylation system (TGS) was shown to be required for TP901‐1 infection. Major cell wall saccharidic components were analysed, but no differences were found. However, heterologous gene expression experiments indicate that this TGS is involved in the glucosylation of a cell envelope‐associated component that triggers TP901‐1 DNA release. To date, a saccharide modification has not been implicated in the DNA delivery process of a Gram‐positive infecting phage
    corecore