41 research outputs found

    The land–sea coastal border: a quantitative definition by considering the wind and wave conditions in a wave-dominated, micro-tidal environment

    Get PDF
    A quantitative definition for the land–sea (coastal) transitional area is proposed here for wave-driven areas, based on the variability and isotropy of met-ocean processes. Wind velocity and significant wave height fields are examined for geostatistical anisotropy along four cross-shore transects on the Catalan coast (north-western Mediterranean), illustrating a case of significant changes along the shelf. The variation in the geostatistical anisotropy as a function of distance from the coast and water depth has been analysed through heat maps and scatter plots. The results show how the anisotropy of wind velocity and significant wave height decrease towards the offshore region, suggesting an objective definition for the coastal fringe width. The more viable estimator turns out to be the distance at which the significant wave height anisotropy is equal to the 90th percentile of variance in the anisotropies within a 100&thinsp;km distance from the coast. Such a definition, when applied to the Spanish Mediterranean coast, determines a fringe width of 2–4&thinsp;km. Regarding the probabilistic characterization, the inverse of wind velocity anisotropy can be fitted to a log-normal distribution function, while the significant wave height anisotropy can be fitted to a log-logistic distribution function. The joint probability structure of the two anisotropies can be best described by a Gaussian copula, where the dependence parameter denotes a mild to moderate dependence between both anisotropies, reflecting a certain decoupling between wind velocity and significant wave height near the coast. This wind–wave dependence remains stronger in the central bay-like part of the study area, where the wave field is being more actively generated by the overlaying wind. Such a pattern controls the spatial variation in the coastal fringe width.</p

    Tunable Fabry-Perot interferometer based on nanoporous anodic alumina for optical biosensing purposes

    Get PDF
    Here, we present a systematic study about the effect of the pore length and its diameter on the specular reflection in nanoporous anodic alumina. As we demonstrate, the specular reflection can be controlled at will by structural tuning (i.e., by designing the pore geometry). This makes it possible to produce a wide range of Fabry-Pérot interferometers based on nanoporous anodic alumina, which are envisaged for developing smart and accurate optical sensors in such research fields as biotechnology and medicine. Additionally, to systematize the responsiveness to external changes in optical sensors based on nanoporous anodic alumina, we put forward a barcode system based on the oscillations in the specular reflection.Abel Santos, Victor S Balderrama, María Alba, Pilar Formentín, Josep Ferré-Borrull, Josep Pallarès, Lluís F Marsa

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    The putative tumour suppressor protein Latexin is secreted by prostate luminal cells and is downregulated in malignancy

    Get PDF
    Loss of latexin (LXN) expression negatively correlates with the prognosis of several human cancers. Despite association with numerous processes including haematopoietic stem cell (HSC) fate, inflammation and tumour suppression, a clearly defined biological role for LXN is still lacking. Therefore, we sought to understand LXN expression and function in the normal and malignant prostate to assess its potential as a therapeutic target. Our data demonstrate that LXN is highly expressed in normal prostate luminal cells but downregulated in high Gleason grade cancers. LXN protein is both cytosolic and secreted by prostate cells and expression is directly and potently upregulated by all-trans retinoic acid (atRA). Whilst overexpression of LXN in prostate epithelial basal cells did not affect cell fate, LXN overexpression in the luminal cancer line LNCaP reduced plating efficiency. Transcriptome analysis revealed that LXN overexpression had no direct effects on gene expression but had significant indirect effects on important genes involved in both retinoid metabolism and IFN-associated inflammatory responses. These data highlight a potential role for LXN in retinoid signaling and inflammatory pathways. Investigating the effects of LXN on immune cell function in the tumour microenvironment (TME) may reveal how observed intratumoural loss of LXN affects the prognosis of many adenocarcinomas

    Prion‐like proteins: from computational approaches to proteome‐wide analysis

    No full text
    Altres ajuts: ICREA-Academia 2020Prions are self-perpetuating proteins able to switch between a soluble state and an aggregated-and-transmissible conformation. These proteinaceous entities have been widely studied in yeast, where they are involved in hereditable phenotypic adaptations. The notion that such proteins could play functional roles and be positively selected by evolution has triggered the development of computational tools to identify prion-like proteins in different kingdoms of life. These algorithms have succeeded in screening multiple proteomes, allowing the identification of prion-like proteins in a diversity of unrelated organisms, evidencing that the prion phenomenon is well conserved among species. Interestingly enough, prion-like proteins are not only connected with the formation of functional membraneless protein-nucleic acid coacervates, but are also linked to human diseases. This review addresses state-of-the-art computational approaches to identify prion-like proteins, describes proteome-wide analysis efforts, discusses these unique proteins' functional role, and illustrates recently validated examples in different domains of life

    Nanoporous anodic alumina barcodes: toward smart optical biosensors

    No full text
    Toward a smart optical biosensor based on nanoporous anodic alumina (NAA): by modifying the pore geometry in nanoporous anodic alumina we are able to change the effective medium at will and tune the photoluminescence of NAA. The oscillations in the PL spectrum are converted into exclusive barcodes, which are useful for developing optical biomedical sensors in the UV-Visible region.Abel Santos, Victor S. Balderrama, María Alba, Pilar Formentín, Josep Ferré-Borrull, Josep Pallarès and Lluís F. Marsa

    Understanding and morphology control of pore modulations in nanoporous anodic alumina by discontinuous anodization

    No full text
    Abstract not availableAbel Santos, Lukas Vojkuvka, María Alba, Victor S. Balderrama, Josep Ferré-Borrull, Josep Pallarès and Lluís F. Marsa
    corecore