15 research outputs found

    Aqueous batteries as grid scale energy storage solutions

    Get PDF
    Energy storage technologies are required to make full use of renewable energy sources, and electrochemical cells offer a great deal flexibility in the design of energy systems. For large scale electrochemical storage to be viable, the materials employed and device production methods need to be low cost, devices should be long lasting and safety during operation is of utmost importance. Energy and power densities are of lesser concern. For these reasons, battery chemistries that make use of aqueous electrolytes are favorable candidates where large quantities of energy need to be stored. Herein we describe several different aqueous based battery chemistries and identify some of the research challenges currently hindering their wider adoption. Lead acid batteries represent a mature technology that currently dominates the battery market, however there remain challenges that may prevent their future use at the large scale. Nickel–iron batteries have received a resurgence of interest of late and are known for their long cycle lives and robust nature however improvements in efficiency are needed in order to make them competitive. Other technologies that use aqueous electrolytes and have the potential to be useful in future large-scale applications are briefly introduced. Recent investigations in to the design of nickel–iron cells are reported with it being shown that electrolyte decomposition can be virtually eliminated by employing relatively large concentrations of iron sulfide in the electrode mixture, however this is at the expense of capacity and cycle life

    Allogenic Adipose-Derived Stem Cells in Diabetic Foot Ulcer Treatment: Clinical Effectiveness, Safety, Survival in the Wound Site, and Proteomic Impact

    No full text
    Although encouraging results of adipose-derived stem cell (ADSC) use in wound healing are available, the mechanism of action has been studied mainly in vitro and in animals. This work aimed to examine the safety and efficacy of allogenic ADSCs in human diabetic foot ulcer treatment, in combination with the analyses of the wound. Equal groups of 23 participants each received fibrin gel with ADSCs or fibrin gel alone. The clinical effects were assessed at four time points: days 7, 14, 21 and 49. Material collected during debridement from a subset of each group was analyzed for the presence of ADSC donor DNA and proteomic changes. The reduction in wound size was greater at all subsequent visits, significantly on day 21 and 49, and the time to 50% reduction in the wound size was significantly shorter in patients who received ADSCs. Complete healing was achieved at the end of the study in seven patients treated with ADSCs vs. one treated without ADSCs. One week after ADSC application, 34 proteins significantly differentiated the material from both groups, seven of which, i.e., GAPDH, CAT, ACTN1, KRT1, KRT9, SCL4A1, and TPI, positively correlated with the healing rate. We detected ADSC donor DNA up to 21 days after administration. We confirmed ADSC-related improvement in wound healing that correlated with the molecular background, which provides insights into the role of ADSCs in wound healing—a step toward the development of cell-based therapies

    Influence of lead dioxide surface films on anodic oxidation of a lead alloy under conditions typical of copper electrowinning

    No full text
    Cyclic voltammograms, current transients at constant potential and potential decay transients have been used to study the formation of lead dioxide surface films in the presence of cobalt ions and their role in decreasing the oxidation rate of a lead alloy under steady state conditions typical of copper electrowinning. The observations in the present work indicate, consistent with the surface film model, that the formation of a continuous PbSO4 + alpha-PbO2 film on the surface of the lead alloy in the presence of cobalt ions hinders further oxidation of the metal. The protectiveness of the film is dynamic in the steady state; the film is continuously forming and dissolving. Also studied was the potential of the oxygen evolution reaction on alpha-PbO2 and beta-PbO2 in 170 g L-1 H2SO4 with and without cobalt ions. The steady state potential for oxygen evolution on beta-PbO2 in 170 g L-1 H2SO4 at 285 A m(-2) decreased in the presence of cobalt ions and the steady state potential of beta-PbO2 was essentially the same as that of (i) the Pb-Ca-Sn alloy and (ii) alpha-PbO2. The implication is that the potential of the Pb-Ca-Sn alloy is determined by the alpha-PbO2 and/or beta-PbO2 on its surface
    corecore