144 research outputs found
The role of statin drugs in combating cardiovascular diseases –A review
Statins clearly confer substantial benefit in people with established cardiovascular (CV) disease. Increased cholesterol levels have been associated with cardiovascular diseases (CVD), and statins are therefore used in the prevention of these diseases. Studies have found that the ability of a particular statin to lower or reduce LDL is proportional to the amount it can increase HDL levels. This review article will focus on the effective role of statin in cardiovascular disease and comparison was made between various classes of statin drugs
Diffraction line profile analysis of 3D wedge samples of Ti-6Al-4V fabricated using four different additive manufacturing processes
Wedge‐-shaped samples were manufactured by four different Additive Manufacturing (AM) processes, namely selective laser melting (SLM), electron beam melting (EBM), direct metal deposition (DMD), and wire and arc additive manufacturing (WAAM), using Ti‐-6Al‐-4V as the feed material. A high‐-resolution powder diffractometer was used to measure the diffraction patterns of the samples whilst rotated about two axes to collect detected neutrons from all possible lattice planes. The diffraction pattern of a LaB6 standard powder sample was also measured to characterize the instrumental broadening and peak shapes necessary for the Diffraction Line Profile Analysis. The line profile analysis was conducted using the extended Convolution Multiple Whole Profile (eCMWP) procedure. Once analyzed, it was found that there was significant variation in the dislocation densities between the SLMed and the EBMed samples, although having a similar manufacturing technique. While the samples fabricated via WAAM and the DMD processes showed almost similar dislocation densities, they were, however, different in comparison to the other two AM processes, as expected. The hexagonal (HCP) crystal structure of the predominant α‐-Ti phase allowed a breakdown of the percentage of the Burgers\u27 vectors possible for this crystal structure. All four techniques exhibited different combinations of the three possible Burgers\u27 vectors, and these differences were attributed to the variation in the cooling rates experienced by the parts fabricated using these AM processes
Biochemical analysis on crop shoots of Camellia sinensis (L.) O. Kuntze tea from the selected UPASI-16 clone.
Commercial tea comes from plants belonging to a relatively large group of cultivated species of Camellia sinensis (L) O. Kuntze. It is one of the oldest known beverages made from the tender leaves of the plants. The main aim of the present study is to analyze the presence of biochemicals in UPASI -16 clone. In the results, the UPASI -16 clone showed high catechin (22.88%), polyphenol (31.70%), polyphenol oxidase (1178.63 U/mg of protein) and tea enzyme peroxidase (729.72 µM of O2 formed min-1g-1 dry weight), catalase (1.89 µM H2O2 reduced min-1 mg-1 protein) and Super oxide dismutase (58.45 U/mg proteins). UPASI -16 showed high catechin content in segregated tea crop shoots from the first internodes (23.66%) followed by the first leaf (22.46%), second leaf and third leaf. Tea quality flavonoid gene expression, while ANR (1.66%) and F3H (1.02%) were down regulated, F35H and ANS (2.82%) were up regulated in UPASI -16. Based on the results, it can be concluded that crop shoots of Camellia sinensis (L) O. Kuntze selected clone of UPASI-16 may possess high amount of biochemicals and may further lead to development of commercial tea
Chemical composition of Moringa oleifera ethyl acetate fraction and its biological activity in diabetic human dermal fibroblasts
Background: Moringa oleifera (MO), commonly known as the drumstick tree, is used in folklore medicine for the treatment of skin disease. Objective: The objective of this study is to evaluate the ethyl acetate (EtOAc) fraction of MO leaves for in vitro antibacterial, antioxidant, and wound healing activities and conduct gas chromatography-mass spectrometry (GC-MS) analysis. Materials and Methods: Antibacterial activity was evaluated against six Gram-positive bacteria and 10 Gram-negative bacteria by disc diffusion method. Free radical scavenging activity was assessed by 1, 1-diphenyl-2-picryl hydrazyl (DPPH) radical hydrogen peroxide scavenging and total phenolic content (TPC). Wound healing efficiency was studied using cell viability, proliferation, and scratch assays in diabetic human dermal fibroblast (HDF-D) cells. Results: The EtOAc fraction showed moderate activity against all bacterial strains tested, and the maximum inhibition zone was observed against Streptococcus pyogenes (30 mm in diameter). The fraction showed higher sensitivity to Gram-positive strains than Gram-negative strains. In the quantitative analysis of antioxidant content, the EtOAc fraction was found to have a TPC of 65.81 ± 0.01. The DPPH scavenging activity and the hydrogen peroxide assay were correlated with the TPC value, with IC50values of 18.21 ± 0.06 and 59.22 ± 0.04, respectively. The wound healing experiment revealed a significant enhancement of cell proliferation and migration of HDF-D cells. GC-MS analysis confirmed the presence of 17 bioactive constituents that may be the principal factors in the significant antibacterial, antioxidant, and wound healing activity. Conclusion: The EtOAc fraction of MO leaves possesses remarkable wound healing properties, which can be attributed to the antibacterial and antioxidant activities of the fraction.Summary: Moringa oleifera (MO) leaf ethyl acetate (EtOAc) fraction possesses antibacterial activities toward Gram-positive bacteria such as Streptococcus pyogenes, Streptococcus faecalis, Bacillus subtilis, Bacillus cereus and Staphylococcus aureus, and Gram-negative bacteria such as Proteus mirabilis and Salmonella typhimuriumMO leaf EtOAc fraction contained the phenolic content of 65.81 ± 0.01 and flavonoid content of 37.1 ± 0.03, respectively. In addition, the fraction contained 17 bioactive constituents associated with the antibacterial, antioxidant, and wound healing properties that were identified using gas chromatography-mass spectrometry analysisMO leaf EtOAc fraction supports wound closure rate about 80% for treatments when compared with control group
Designing of the anticancer nanocomposite with sustained release properties by using graphene oxide nanocarrier with Phenethyl isothiocyanate as anticancer agent
In this study anticancer nanocomposite was designed using graphene oxide (GO) as nanocarrier and Phenethyl isothiocyanate (PEITC) as anticancer agent. The designed formulation was characterized in detailed with XRD, Raman, UV/Vis, FTIR, DLS and TEM etc. The designed anticancer nanocomposite showed much better anticancer activity against liver cancer HepG2 cells compared to the free drug PEITC and was also found to be nontoxic to the normal 3T3 cells. In vitro release of the drug from the anticancer nanocomposite formulation was found to be sustained in human body simulated phosphate buffer saline (PBS) solution of pH 7.4 (blood pH) and pH 4.8 (intracellular lysosomal pH). This study suggests that GO could be developed as an efficient drug carrier to conjugate with PEITC for pharmaceutical applications in cancer chemotherapies
Modulatory and regenerative potential of transplanted bone marrow derived mesenchymal stem cells on rifampicin-induced kidney toxicity
Anti-tuberculosis agent rifampicin is extensively used for its effectiveness. Possible complications of tuberculosis and prolonged rifampicin treatment include kidney damage; these conditions can lead to reduced efficiency of the affected kidney and consequently to other diseases. Bone marrow-derived mesenchymal stem cells (BMMSCs) can be used in conjunction with rifampicin to avert kidney damage; because of its regenerative and differentiating potentials into kidney cells. This research was designed to assess the modulatory and regenerative potentials of MSCs in averting kidney damage due to rifampicin-induced kidney toxicity in Wistar rats and their progenies. BMMSCs used in this research were characterized according to the guidelines of International Society for Cellular Therapy
Developments in nanoparticles for use in biosensors to assess food safety and quality
The following will provide an overview on how advances in nanoparticle technology have contributed towards developing biosensors to screen for safety and quality markers associated with foods. The novel properties of nanoparticles will be described and how such characteristics have been exploited in sensor design will be provided. All the biosensor formats were initially developed for the health care sector to meet the demand for point-of-care diagnostics. As a consequence, research has been directed towards miniaturization thereby reducing the sample volume to nanolitres. However, the needs of the food sector are very different which may ultimately limit commercial application of nanoparticle based nanosensors. © 2014 Elsevier Ltd
Pharmacological insights into antioxidants against colorectal cancer: A detailed review of the possible mechanisms
Colorectal cancer (CRC) is ranked as the fourth most lethal and commonly diagnosed cancer in the world ac-cording to the National Cancer Institute’s latest report. Treatment methods for CRC are constantly being studied for advancement, which leads for more clinically effective cancer curing strategy. Patients with prolonged chronic inflammation caused by ulcerative colitis or similar inflammatory bowel disease are known to have high risks of developing CRC. But at a molecular level, oxidative stress due to reactive oxygen species (ROS) is an important trigger for cancer. Hence, in recent years, exogenous antioxidants have been immensely experimented in pre-clinical and clinical trials, considering it as a potential cure for CRC. Significantly, potential antioxidant compounds especially derivatives of medicinal plants have received great attention in the current research trend for CRC treatment. Though antioxidant compounds seem to have beneficial properties for the treatment of CRC, there are also limitations for pure compounds to be tested clinically. Therefore, this review aims to delineate the pharmacological awareness among researchers on using antioxidant compounds to treat CRC and the measures taken to prove the effectiveness of such compounds as impending drug candidates for CRC treatment in modern medication
Repeated infections of dengue (serotype DENV-2) in lung cells of BALB/c mice lead to severe histopathological consequences
To determine the effect of DENV (serotype 2) repeated infections on lung cells is the main goal of this study. From the result, lung histology of control BALB/c mice showed normal alveolar morphology, while vehicle control BALB/c mice highlighted a slight thickening of the alveolar septum. Lung histopathology of BALB/c mice infected twice by DENV-2 showed the presence of hemorrhage, plasma leakage and presence of hemosiderin-laden macrophages (HLMs). Notably, in the lung of BALB/c mice infected four times by DENV-2, we observed thickening and disruption of the alveolar septum, inflammatory cell infiltration, plasma leakage and increased cellularity. Megakaryocyte releasing platelets were also found into the lung alveolus. Overall, our findings showed severe histopathological damage in lungs repeatedly infected by DENV-2, allowing us to argue that they can be linked to pulmonary complication. Result also showed that the number of infections with similar total DENV-2 titer led to different histopathological changes
Hypoxic-mediated oxidative stress condition and hydroxyapatite-inducing osteogenic differentiation of human mesenchymal stem cells: a mathematical modelling study
Avascular necrosis (AVN) of the bones remains a major clinical challenge. Fractures in the talus, the scaphoid, and the neck of the femur are especially challenging to heal due to the low blood vessel network and the lack of collateral blood supply. These fractures are associated with high rates of nonunion and increased infections that require repeated operations. Conventional treatments by autografting or allografting bone replacement and synthetic bone implants have limitations, including the invasiveness of operative procedures, tissue supply insufficiency, and the risk of host rejection. The advancement in tissue engineering has revealed the potential of stem cells as restorative agents for bone injuries. The administration of mesenchymal stem cells (MSCs) into the talus, the scaphoid, and the neck of the femur could produce enhanced osteogenesis via the manipulation of MSC culture conditions. In this study, we used hydroxyapatite as the nanomaterial, and hypoxic milieu to enhance MSC differentiation capacity into the osteogenic lineage, allowing for more rapid and efficient bone cell replacement treatment. Our results demonstrate 1% oxygen and 12.5 μg/mL of hydroxyapatite (HAP) as the optimal conditions to incorporate the osteogenic medium for the osteogenic induction of MSCs. We also established a proof of concept that the addition of HAP and hypoxic conditions could augment the osteoinductive capacity of MSCs. We also developed an accurate mathematical model to support future bone cell replacement therapy
- …