616 research outputs found
A new fireworm (Amphinomidae) from the Cretaceous of Lebanon identified from three-dimensionally preserved myoanatomy
© 2015 Parry et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article
Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage.
Intracerebral haemorrhage (ICH) is a devastating condition with limited treatment options, and current understanding of pathophysiology is incomplete. Spontaneous cerebral bleeding is a characteristic of the human condition that has proven difficult to recapitulate in existing pre-clinical rodent models. Zebrafish larvae are frequently used as vertebrate disease models and are associated with several advantages, including high fecundity, optical translucency and non-protected status prior to 5 days post-fertilisation. Furthermore, other groups have shown that zebrafish larvae can exhibit spontaneous ICH. The aim of this study was to investigate whether such models can be utilised to study the pathological consequences of bleeding in the brain, in the context of pre-clinical ICH research. Here, we compared existing genetic (bubblehead) and chemically inducible (atorvastatin) zebrafish larval models of spontaneous ICH and studied the subsequent disease processes. Through live, non-invasive imaging of transgenic fluorescent reporter lines and behavioural assessment we quantified brain injury, locomotor function and neuroinflammation following ICH. We show that ICH in both zebrafish larval models is comparable in timing, frequency and location. ICH results in increased brain cell death and a persistent locomotor deficit. Additionally, in haemorrhaged larvae we observed a significant increase in macrophage recruitment to the site of injury. Live in vivo imaging allowed us to track active macrophage-based phagocytosis of dying brain cells 24 hours after haemorrhage. Morphological analyses and quantification indicated that an increase in overall macrophage activation occurs in the haemorrhaged brain. Our study shows that in zebrafish larvae, bleeding in the brain induces quantifiable phenotypic outcomes that mimic key features of human ICH. We hope that this methodology will enable the pre-clinical ICH community to adopt the zebrafish larval model as an alternative to rodents, supporting future high throughput drug screening and as a complementary approach to elucidating crucial mechanisms associated with ICH pathophysiology
Magnetic resonance imaging in patients with meningitis induced hearing loss
The aim of this multicentre study was to compare T1 with T2 weighted MRI scans of the labyrinth after meningitis and to investigate whether waiting with scanning improved the reliability of diagnosing an ongoing process such as cochlear osteogenesis. Forty-five patients were included who suffered from meningitis induced hearing loss (radiological imaging <1 year after meningitis). Twenty-one gadolinium enhanced T1 and 45 T2 weighted MRI scans were scored by two radiologists regarding the condition of the labyrinth. These radiological observations were compared with the condition of the cochlea as described during cochlear implantation. A higher percentage of agreement with surgery was found for T2 (both radiologists 73%) than for T1 weighted MRI scans (radiologist 1: 62%, radiologist 2: 67%), but this difference is not significant. There was no significant difference between early (0–3 months) and late (>3 months) scanning, showing that radiological imaging soon after meningitis allows early diagnosis without suffering from a lower agreement with surgical findings
Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015
SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation
Search for rare quark-annihilation decays, B --> Ds(*) Phi
We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context
of the Standard Model, these decays are expected to be highly suppressed since
they proceed through annihilation of the b and u-bar quarks in the B- meson.
Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected
with the BABAR detector at SLAC. We find no evidence for these decays, and we
set Bayesian 90% confidence level upper limits on the branching fractions BF(B-
--> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results
are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid
Communications
Use of Saliva for Early Dengue Diagnosis
The importance of laboratory diagnosis of dengue cannot be undermined. In recent years, many dengue diagnostic tools have become available for various stages of the disease, but the one limitation is that they require blood as a specimen for testing. In many incidences, phlebotomy in needle-phobic febrile individuals, especially children, can be challenging, and the tendency to forgo a dengue blood test is high. To circumvent this, we decided to work toward a saliva-based assay (antigen-capture anti-DENV IgA ELISA, ACA-ELISA) that has the necessary sensitivity and specificity to detect dengue early. Overall sensitivity of the ACA-ELISA, when tested on saliva collected from dengue-confirmed patients (EDEN study) at three time points, was 70% in the first 3 days after fever onset and 93% between 4 to 8 days after fever onset. In patients with secondary dengue infections, salivary IgA was detected on the first day of fever onset in all the dengue confirmed patients. This demonstrates the utility of saliva in the ACA-ELISA for early dengue diagnostics. This technique is easy to perform, cost effective, and is especially useful in dengue endemic countries
Molecular Characterization of Cryptosporidium Species and Giardia duodenalis from Symptomatic Cambodian Children
Background: In a prospective study, 498 single faecal samples from children aged under 16 years attending an outpatient clinic in the Angkor Hospital for Children, northwest Cambodia, were examined for Cryptosporidium oocysts and Giardia cysts using microscopy and molecular assays. Methodology/Principal Findings: Cryptosporidium oocysts were detected in 2.2% (11/498) of samples using microscopy and in 7.7% (38/498) with molecular tests. Giardia duodenalis cysts were detected in 18.9% (94/498) by microscopy and 27.7% (138/498) by molecular tests; 82% of the positive samples (by either method) were from children aged 1–10 years. Cryptosporidium hominis was the most common species of Cryptosporidium, detected in 13 (34.2%) samples, followed by Cryptosporidium meleagridis in 9 (23.7%), Cryptosporidium parvum in 8 (21.1%), Cryptosporidium canis in 5 (13.2%), and Cryptosporidium suis and Cryptosporidium ubiquitum in one sample each. Cryptosporidium hominis and C. parvum positive samples were subtyped by sequencing the GP60 gene: C. hominis IaA16R6 and C. parvum IIeA7G1 were the most abundant subtypes. Giardia duodenalis was typed using a multiplex real-time PCR targeting assemblages A and B. Assemblage B (106; 76.8% of all Giardia positive samples) was most common followed by A (12.3%) and mixed infections (5.1%). Risk factors associated with Cryptosporidium were malnutrition (AOR 9.63, 95% CI 1.67–55.46), chronic medical diagnoses (AOR 4.51, 95% CI 1.79–11.34) and the presence of birds in the household (AOR 2.99, 95% CI 1.16–7.73); specifically C. hominis (p = 0.03) and C. meleagridis (p<0.001) were associated with the presence of birds. The use of soap was protective against Giardia infection (OR 0.74, 95% CI 0.58–0.95). Conclusions/Significance: This is the first report to describe the different Cryptosporidium species and subtypes and Giardia duodenalis assemblages in Cambodian children. The variety of Cryptosporidium species detected indicates both anthroponotic and zoonotic transmission in this population. Interventions to improve sanitation, increase hand washing after defecation and before preparing food and promote drinking boiled water may reduce the burden of these two parasites
Inhibitors of mitogen-activated protein kinases differentially regulate costimulated T cell cytokine production and mouse airway eosinophilia
BACKGROUND: T cells play a dominant role in the pathogenesis of asthma. Costimulation of T cells is necessary to fully activate them. An inducible costimulator (ICOS) of T cells is predominantly expressed on Th2 cells. Therefore, interference of signaling pathways precipitated by ICOS may present new therapeutic options for Th2 dominated diseases such as asthma. However, these signaling pathways are poorly characterized in vitro and in vivo. METHODS: Human primary CD4(+ )T cells from blood were activated by beads with defined combinations of surface receptor stimulating antibodies and costimulatory receptor ligands. Real-time RT-PCR was used for measuring the production of cytokines from activated T cells. Activation of mitogen activated protein kinase (MAPK) signaling pathways leading to cytokine synthesis were investigated by western blot analysis and by specific inhibitors. The effect of inhibitors in vivo was tested in a murine asthma model of late phase eosinophilia. Lung inflammation was assessed by differential cell count of the bronchoalveolar lavage, determination of serum IgE and lung histology. RESULTS: We showed in vitro that ICOS and CD28 are stimulatory members of an expanding family of co-receptors, whereas PD1 ligands failed to co-stimulate T cells. ICOS and CD28 activated different MAPK signaling cascades necessary for cytokine activation. By means of specific inhibitors we showed that p38 and ERK act downstream of CD28 and that ERK and JNK act downstream of ICOS leading to the induction of various T cell derived cytokines. Using a murine asthma model of late phase eosinophilia, we demonstrated that the ERK inhibitor U0126 and the JNK inhibitor SP600125 inhibited lung inflammation in vivo. This inhibition correlated with the inhibition of Th2 cytokines in the BAL fluid. Despite acting on different signaling cascades, we could not detect synergistic action of any combination of MAPK inhibitors. In contrast, we found that the p38 inhibitor SB203580 antagonizes the action of the ERK inhibitor U0126 in vitro and in vivo. CONCLUSION: These results demonstrate that the MAPKs ERK and JNK may be suitable targets for anti-inflammatory therapy of asthma, whereas inhibition of p38 seems to be an unlikely target
Cooperative breeding by the Galápagos mockingbird, Nesomimus parvulus
The costs and benefits of helping behavior were analyzed for 36 pairs of the Galápagos mockingbird, Nesomimus parvulus , and their associates. Helping at the nest is usually done by sons or males suspected to be offspring of the breeders. Costs and benefits to breeders were assessed by comparison of pairs with and without helpers, and costs and benefits to helpers were assessed by comparison of birds which help and those which establish themselves as novice breeders.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46866/1/265_2004_Article_BF00296397.pd
Thresholds of riparian forest use by terrestrial mammals in a fragmented Amazonian deforestation frontier
Species persistence in fragmented landscapes is intimately related to the quality, structure, and context of remaining habitat remnants. Riparian vegetation is legally protected within private landholdings in Brazil, so we quantitatively assessed occupancy patterns of terrestrial mammals in these remnants, examining under which circumstances different species effectively use them. We selected 38 riparian forest patches and five comparable riparian sites within continuous forest, at which we installed four to five camera-traps per site (199 camera-trap stations). Terrestrial mammal assemblages were sampled for 60 days per station during the dry seasons of 2013 and 2014. We modelled species occupancy and detection probabilities within riparian forest remnants, and examined the effects of patch size, habitat quality, and landscape structure on occupancy probabilities. We then scaled-up modelled occupancies to all 1915 riparian patches throughout the study region to identify which remnants retain the greatest potential to work as habitat for terrestrial vertebrates. Of the ten species for which occupancy was modelled, six responded to forest quality (remnant degradation, cattle intrusion, palm aggregations, and understorey density) or structure (remnant width, isolation, length, and area of the patch from which it originates). Patch suitability was lower considering habitat quality than landscape structure, and virtually all riparian remnants were unsuitable to maintain a high occupancy probability for all species that responded to forest patch quality or structure. Beyond safeguarding legal compliance concerning riparian remnant amount, ensuring terrestrial vertebrate persistence in fragmented landscapes will require curbing the drivers of forest degradation within private landholdings
- …