78 research outputs found

    Satellites and large doping- and temperature-dependence of electronic properties in hole-doped BaFe2As2

    Get PDF
    Over the last years, superconductivity has been discovered in several families of iron-based compounds. Despite intense research, even basic electronic properties of these materials, such as Fermi surfaces, effective electron masses, or orbital characters are still subject to debate. Here, we address an issue that has not been considered before, namely the consequences of dynamical screening of the Coulomb interactions among Fe-d electrons. We demonstrate its importance not only for correlation satellites seen in photoemission spectroscopy, but also for the low-energy electronic structure. From our analysis of the normal phase of BaFe2As2 emerges the picture of a strongly correlated compound with strongly doping- and temperature-dependent properties. In the hole overdoped regime, an incoherent metal is found, while Fermi-liquid behavior is recovered in the undoped compound. At optimal doping, the self-energy exhibits an unusual square-root energy dependence which leads to strong band renormalizations near the Fermi level

    Small Polarons in Transition Metal Oxides

    Full text link
    The formation of polarons is a pervasive phenomenon in transition metal oxide compounds, with a strong impact on the physical properties and functionalities of the hosting materials. In its original formulation the polaron problem considers a single charge carrier in a polar crystal interacting with its surrounding lattice. Depending on the spatial extension of the polaron quasiparticle, originating from the coupling between the excess charge and the phonon field, one speaks of small or large polarons. This chapter discusses the modeling of small polarons in real materials, with a particular focus on the archetypal polaron material TiO2. After an introductory part, surveying the fundamental theoretical and experimental aspects of the physics of polarons, the chapter examines how to model small polarons using first principles schemes in order to predict, understand and interpret a variety of polaron properties in bulk phases and surfaces. Following the spirit of this handbook, different types of computational procedures and prescriptions are presented with specific instructions on the setup required to model polaron effects.Comment: 36 pages, 12 figure

    Thermopower of the Correlated Narrow Gap Semiconductor FeSi and Comparison to RuSi

    Full text link
    Iron based narrow gap semiconductors such as FeSi, FeSb2, or FeGa3 have received a lot of attention because they exhibit a large thermopower, as well as striking similarities to heavy fermion Kondo insulators. Many proposals have been advanced, however, lacking quantitative methodologies applied to this problem, a consensus remained elusive to date. Here, we employ realistic many-body calculations to elucidate the impact of electronic correlation effects on FeSi. Our methodology accounts for all substantial anomalies observed in FeSi: the metallization, the lack of conservation of spectral weight in optical spectroscopy, and the Curie susceptibility. In particular we find a very good agreement for the anomalous thermoelectric power. Validated by this congruence with experiment, we further discuss a new physical picture of the microscopic nature of the insulator-to-metal crossover. Indeed, we find the suppression of the Seebeck coefficient to be driven by correlation induced incoherence. Finally, we compare FeSi to its iso-structural and iso-electronic homologue RuSi, and predict that partially substituted Fe(1-x)Ru(x)Si will exhibit an increased thermopower at intermediate temperatures.Comment: 14 pages. Proceedings of the Hvar 2011 Workshop on 'New materials for thermoelectric applications: theory and experiment

    Preventive and curative effect of melatonin on mammary carcinogenesis induced by dimethylbenz[a]anthracene in the female Sprague–Dawley rat

    Get PDF
    INTRODUCTION: It has been well documented that the pineal hormone, melatonin, which plays a major role in the control of reproduction in mammals, also plays a role in the incidence and growth of breast and mammary cancer. The curative effect of melatonin on the growth of dimethylbenz [a]anthracene-induced (DMBA-induced) mammary adenocarcinoma (ADK) has been previously well documented in the female Sprague–Dawley rat. However, the preventive effect of melatonin in limiting the frequency of cancer initiation has not been well documented. METHODS: The aim of this study was to compare the potency of melatonin to limit the frequency of mammary cancer initiation with its potency to inhibit tumor progression once initiation, at 55 days of age, was achieved. The present study compared the effect of preventive treatment with melatonin (10 mg/kg daily) administered for only 15 days before the administration of DMBA with the effect of long-term (6-month) curative treatment with the same dose of melatonin starting the day after DMBA administration. The rats were followed up for a year after the administration of the DMBA. RESULTS: The results clearly showed almost identical preventive and curative effects of melatonin on the growth of DMBA-induced mammary ADK. Many hypotheses have been proposed to explain the inhibitory effects of melatonin. However, the mechanisms responsible for its strong preventive effect are still a matter of debate. At least, it can be envisaged that the artificial amplification of the intensity of the circadian rhythm of melatonin could markedly reduce the DNA damage provoked by DMBA and therefore the frequency of cancer initiation. CONCLUSION: In view of the present results, obtained in the female Sprague–Dawley rat, it can be envisaged that the long-term inhibition of mammary ADK promotion by a brief, preventive treatment with melatonin could also reduce the risk of breast cancer induced in women by unidentified environmental factors

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore