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These supplementary notes describe the methods used
in our ab-initio simulation of BaFe2As2 with dynamically
screened interactions.

A. Frequency dependent interaction from constrained RPA

In the constrained RPA (cRPA) method1,2

a one-particle subspace {ψd} of the low-energy space, which
we call the “d subspace”, and label the rest of the Hilbert space
by {ψr} (“r subspace”). In the present case, we choose 10
states having strong Fe-3d character as the d subspace (see

Pd(r, r
′;ω) to be the polarization within

FIG. 1: Electronic band structure of BaFe2As2. The black lines show
the LDA band structure, whereas the red dots are interpolated bands
in the d subspace obtained using the maximally localized Wannier
function procedure.

the d subspace and P (r, r′;ω) as the total polarization. The
rest of the polarization Pr = P − Pd is not the same as the
polarization of the r subspace alone because it contains polar-
ization arising from transitions between the d and r subspaces.
The physical idea behind the cRPA method is that the Hub-
bard U

in the low-energy effective theory, must be such that when it is
screened by the polarization of the low-energy states, it should
be equal to the fully screened interactionW of the whole sys-

tionWr(r, r
′;ω) by

Wr(ω) = [1 − V Pr(ω)]−1V, (1)

with V denoting the bare Coulomb interaction. The d states
are entangled with others in the present system. In order
to distinguish between Pd and Pr , we apply a disentangling
procedure3.
The Hamiltonian for our DMFT calculations contains the

ten bands around the Fermi level with dominantly Fe-d char-
acter and also the six bands (located at −6 to −2 eV) mainly
coming from the As-p bands. The Fe-d orbitals are treated as
correlated, whereas the As-p orbitals are assumed to be non-
interacting.
The action, equation (4) of the main text, requires the

bare unscreened parameters Vmm′ and Jmm′ , which are ob-
tained as onsite matrix elements Vmm′ = 〈mm′|V |mm′〉
and Jmm′ = 〈mm′|V |m′m〉 of the bare Coulomb interac-
tion in the maximally localized Wannier functions (MLWF)4,5

m,m′ for the Fe-d orbitals. The action also requires the
screening Uretarded of the monopole term in the interaction
(last line in equation (4)). This is obtained from the av-
erage over orbital entries of the matrix 〈mm′|Wr|mm

′〉 as
Uretarded = 1

5

∑
m〈mm|Wr − V |mm〉.

The frequency dependence of the partially screened in-
teraction, averaged over diagonal elements, U(ω) =
1
5

∑
m〈mm|Wr |mm〉 is plotted in Fig. 1 of the main text.

To illustrate the difference to the fully screened interaction
W (ω) = [1 − V P (ω)]−1V , we plot the analogous diag-
onal matrix element average W (ω) in Fig. 2. Note that
ReU(ω = 0) = 3.61 eV, while ReW (ω = 0) = 0.975 eV.
We emphasize that the physically relevant quantity is the one
in Fig. 1 of the main text; Fig. 2 is only for comparison.
In more familiar notation, our procedure corresponds to in-

cluding screening effects on the charging energy “U”, while
leaving the higher multipole interaction at their unscreened
value. In the cRPA the screening effects on J are very small
(∼ 15 % variation between high- and low-frequency value).
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Our parameters correspond to the value J = 0.68eV, as ob-
tained from the average over the off-diagonal matrix elements
of Jmm′ . In agreement with previous studies on other iron
pnictides10,11

tively on the value of the Hund’s coupling J .

ing the screening effects amounts to employing a Hamiltonian
with an instantaneous interaction, equal to the screened inter-
action and with hybridisation events dressed by a Lang-Firsov
factor which accounts for the dynamics of screening. Because
we screen only the monopole interactions, the “screened inter-
actions” are constructed as follows: we use the bare value of
J ( = 0.68 eV), and the Slater integral F0 (= 2.84 eV) which
is such that the partially screened value of the intraorbital in-
teraction reproduces the orbital average over the cRPA values.
We then calculate the symmetrized version of the interaction
matrices following the standard Slater parametrization as e.g.

s
matrices for same and opposite spin in orbital space, with the
order of the orbitals as follows: xy, yz, z2, zx, x2 − y2.

Uσσ̄
mn =

⎛
⎜⎜⎜⎝

3.61 2.57 2.42 2.57 3.03
2.57 3.61 2.88 2.57 2.57
2.42 2.88 3.61 2.88 2.42
2.57 2.57 2.88 3.61 2.57
3.03 2.57 2.42 2.57 3.61

⎞
⎟⎟⎟⎠ , (2)

Uσσ
mn =

⎛
⎜⎜⎜⎝

0.00 2.05 1.82 2.05 2.74
2.05 0.00 2.51 2.05 2.05
1.82 2.51 0.00 2.51 1.82
2.05 2.05 2.51 0.00 2.05
2.74 2.05 1.82 2.05 0.00

⎞
⎟⎟⎟⎠ . (3)

For comparison, we also give the matrices obtained from
the cRPA calculation at vanishing frequency:

(UcRPA)σσ̄
mn =

⎛
⎜⎜⎜⎝

3.80 2.42 2.31 2.42 2.86
2.42 3.56 2.73 2.34 2.33
2.31 2.73 3.73 2.73 2.22
2.42 2.34 2.73 3.56 2.33
2.86 2.33 2.22 2.33 3.43

⎞
⎟⎟⎟⎠ , (4)

(UcRPA)σσ
mn =

⎛
⎜⎜⎜⎝

0.00 1.79 1.59 1.79 2.49
1.79 0.00 2.27 1.76 1.72
1.59 2.27 0.00 2.27 1.54
1.79 1.76 2.27 0.00 1.72
2.49 1.72 1.54 1.72 0.00

⎞
⎟⎟⎟⎠ . (5)

dependent interaction

The Coulomb matrix elements (2) and (3), their frequency
dendence (encoded by ImU(ω)) and the Hamiltonian matrix
Hk for the p and d bands in the Wannier basis are the input
of the DMFT calculation. DMFT neglects the momentum de-
pendence of the self-energy and replaces the lattice problem
by a 5-orbital impurity model with frequency dependent lo-
cal interactions, and a self-consistency procedure (involving
Hk

9. Since the LDA
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FIG. 2: Frequency dependence of the fully screened Coulomb in-
teraction W (ω) for BaFe2As2, obtained as the average over the
diagonal matrix elements within the maximally localized Wannier
basis: W (ω) = 1

5

P
m
〈mm|W |mm〉. The dashed lines show

the result for the partially screened Coulomb interaction U(ω) =
1

5

P
m
〈mm|Wr|mm〉.

bandstructure (Hk) already captures some correlation effects
in the d-orbitals, we modify the self-energy Σd by an orbital
independent shift (double-counting correction) of

EDC = F0(nd − 1/2)− J(nd/2 − 1/2), (6)

with nd the self-consistently computed number of d elec-
trons. This double counting was found in Ref. 12 to yield
the best agreement between charge-selfconsistent and non-
selfconsistent calculations. Note that the static value of the
interaction appears in EDC . This is because the addition
of bosonic modes in a dynamically screened model requires
the introduction of additional double counting terms for these
modes, which eliminate the bare interaction from the double
counting formula.
The new feature, compared to previous LDA+DMFT sim-

ulations, is the treatment of the full frequency dependence
of the interaction. We employ the method developed in
Refs. 13,14, which is based on the hybridization expansion
approach15. This technique can be easily generalized to multi-

b(ω′, τ) =

cosh
[(
τ − β

2

)
ω′

]
/ sinh

[
ω′β
2

]
and the function (valid for

0 ≤ τ ≤ β)

K(τ) =

∫
∞

0

dω′

π

ImUretarded(ω′)

ω′2
[b(ω′, τ) − b(ω′, 0)], (7)

which corresponds to the twice integrated nonlocal interac-
tion. The frequency dependence of U then enters the hy-
bridization expansion calculation in the form of a non-local
interaction between each pair of creation and/or annihila-
tion operators (irrespective of orbital) of the form wij =
exp[sisjK(τi − τj)], where τi > τj are the positions of the
two hybridization events on the imaginary time interval and
s = 1 for creation operators and −1 for annihilation opera-

ion
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proceeds as usual (with the static value of U (equations (2, 3))
for the evaluation of the interaction contribution to the Monte
Carlo weight), via random insertions and removals of pairs
of hybridization operators. For models with density-density

em-
perature, T = 145 K, we used about 10 CPU hours per itera-
tion.

C. Analytical continuation

The DMFT calculation yields an imaginary-time Green
function which contains all the dynamic features encoded in
the retarded interaction U(ω). However, to analyze the ef-
fects of the retarded interaction on the spectral function, an
inversion procedure is required which allows us to go from
the imaginary time to the real time domain. The stochastic

cult for standard Maximum entropymethods if one aims at re-
solving intermediate-to-high energy features like the satellites
discussed in the main text. In Ref. 16, a new analytical con-
tinuation procedure has been proposed which is based on the
exact atomic limit properties of quantum impurity problems
with retarded interactions. In that limit, the exact Green func-
tion becomes the product of a purely static (local in time) in-
teracting part, Gstatic(τ), and the factor B(τ) = exp[−K(τ)]
with bosonic symmetry containing the full retarded tail of the
interaction U . Gstatic and B are analytically known, and B
is responsible for both the low-energy renormalization of the
Green function, and the satellites resulting from the screen-
ing processeses embedded in U . The information encoded in
the B factor gives the correct asymptotics and intermediate-

to-high energy properties even away from the atomic limit,
as the hybridization affects mainly the low-energy part of the
spectral function.
Motivated by these considerations we introduce an auxil-

iary Green functionGauxiliary satisfying

G(τ) = Gauxiliary(τ)B(τ). (8)

Gauxiliary describes mainly the low-energy features of the full
Green function, thanks to the energy scale separation in the
spectrum. Therefore, the standard maximum entropy method
can be applied reliably to compute the spectral function ρaux
ofGauxiliary, while ρB - the spectral representation of the Bose
factor B - can be obtained via the numerical integration of
equation (7) at any desired accuracy. The full spectral function
is obtained from the integral

ρ(ω) =

∫
∞

−∞

dε ρB(ε)
1 + e−βω

(1 + eβ(ε−ω))(1 − e−βε)
ρaux(ω − ε).

(9)
At zero temperature, equation (9) reduces to the convolution
of ρB and ρaux.
The bosonic spectral function ρB for BaFe2As2 is shown

in Fig. 1 of the main text. It essentially inherits the structures
from ImU(ω)/ω2. If ρaux(ω) has a sharp peak at ω ≈ 0,
this convolution will produce a satellite at each of the energies
corresponding to sharp features in ρB .
To analytically continue the self-energy, Σ(iωn), we de-

GΣ(iωn) = [iωn − μeff −
Σ(iωn)]−1 and apply the above procedure to GΣ(iωn). From
its spectral function ρΣ(ω), the calculation of Σ(ω) follows
straightforwardly through the Kramers-Kronig relations.
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