18 research outputs found

    Negative Regulation of EGFR/MAPK Pathway by Pumilio in Drosophila melanogaster

    Get PDF
    In Drosophila melanogaster, specification of wing vein cells and sensory organ precursor (SOP) cells, which later give rise to a bristle, requires EGFR signaling. Here, we show that Pumilio (Pum), an RNA-binding translational repressor, negatively regulates EGFR signaling in wing vein and bristle development. We observed that loss of Pum function yielded extra wing veins and additional bristles. Conversely, overexpression of Pum eliminated wing veins and bristles. Heterozygotes for Pum produced no phenotype on their own, but greatly enhanced phenotypes caused by the enhancement of EGFR signaling. Conversely, over-expression of Pum suppressed the effects of ectopic EGFR signaling. Components of the EGFR signaling pathway are encoded by mRNAs that have Nanos Response Element (NRE)–like sequences in their 3’UTRs; NREs are known to bind Pum to confer regulation in other mRNAs. We show that these NRE-like sequences bind Pum and confer repression on a luciferase reporter in heterologous cells. Taken together, our evidence suggests that Pum functions as a negative regulator of EGFR signaling by directly targeting components of the pathway in Drosophila

    Fine-Tuning Enhancer Models to Predict Transcriptional Targets across Multiple Genomes

    Get PDF
    Networks of regulatory relations between transcription factors (TF) and their target genes (TG)- implemented through TF binding sites (TFBS)- are key features of biology. An idealized approach to solving such networks consists of starting from a consensus TFBS or a position weight matrix (PWM) to generate a high accuracy list of candidate TGs for biological validation. Developing and evaluating such approaches remains a formidable challenge in regulatory bioinformatics. We perform a benchmark study on 34 Drosophila TFs to assess existing TFBS and cis-regulatory module (CRM) detection methods, with a strong focus on the use of multiple genomes. Particularly, for CRM-modelling we investigate the addition of orthologous sites to a known PWM to construct phyloPWMs and we assess the added value of phylogenentic footprinting to predict contextual motifs around known TFBSs. For CRM-prediction, we compare motif conservation with network-level conservation approaches across multiple genomes. Choosing the optimal training and scoring strategies strongly enhances the performance of TG prediction for more than half of the tested TFs. Finally, we analyse a 35th TF, namely Eyeless, and find a significant overlap between predicted TGs and candidate TGs identified by microarray expression studies. In summary we identify several ways to optimize TF-specific TG predictions, some of which can be applied to all TFs, and others that can be applied only to particular TFs. The ability to model known TF-TG relations, together with the use of multiple genomes, results in a significant step forward in solving the architecture of gene regulatory networks

    Serial specification of diverse neuroblast identities from a neurogenic placode by Notch and Egfr signaling

    No full text
    We used the brain insulin-producing cell (IPC) lineage and its identified neuroblast (IPC NB) as a model to understand a novel example of serial specification of NB identities in the Drosophila dorsomedial protocerebral neuroectoderm. The IPC NB was specified from a small, molecularly identified group of cells comprising an invaginated epithelial placode. By progressive delamination of cells, the placode generated a series of NB identities, including the single IPC NB, a number of other canonical Type I NBs, and a single Type II NB that generates large lineages by transient amplification of neural progenitor cells. Loss of Notch function caused all cells of the placode to form as supernumerary IPC NBs, indicating that the placode is initially a fate equivalence group for the IPC NB fate. Loss of Egfr function caused all placodal cells to apoptose, except for the IPC NB, indicating a requirement of Egfr signaling for specification of alternative NB identities. Indeed, both derepressed Egfr activity in yan mutants and ectopic EGF activity produced supernumerary Type II NBs from the placode. Loss of both Notch and Egfr function caused all placode cells to become IPC NBs and survive, indicating that commitment to NB fate nullified the requirement of Egfr activity for placode cell survival. We discuss the surprising parallels between the serial specification of neural fates from this neurogenic placode and the fly retina

    Transcriptional profiling of olfactory system development identifies distal antenna as a regulator of subset of neuronal fates

    Get PDF
    Drosophila uses 50 different olfactory receptor neuron (ORN) classes that are clustered within distinct sensilla subtypes to decipher their chemical environment. Each sensilla subtype houses 1–4 ORN identities that arise through asymmetric divisions of a single sensory organ precursor (SOP). Despite a number of mutational studies investigating the regulation of ORN development, a majority of the transcriptional programs that lead to the different ORN classes in the developing olfactory system are unknown. Here we use transcriptional profiling across the time series of antennal development to identify novel transcriptional programs governing the differentiation of ORNs. We surveyed four critical developmental stages of the olfactory system: 3rd instar larval (prepatterning), 8 hours after puparium formation (APF, SOP selection), 40 hrs APF (neurogenesis), and adult antennae. We focused on the expression profiles of olfactory receptor genes and transcription factors—the two main classes of genes that regulate the sensory identity of ORNs. We identify distinct clusters of genes that have overlapping temporal expression profiles suggesting they have a key role during olfactory system development. We show that the expression of the transcription factor distal antenna (dan) is highly similar to other prepatterning factors and is required for the expression of a subset of ORs
    corecore